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Preface

This thesis presents the results of an investigation into the application of frame
selection as a post-detection processing technique for Air Force adaptive optics sys-
tems. The key result is that frame selection improves the signal-to-noise ratio and
visible resolution of actual imagery from the Air Force Maui Optical Station. In
addition, this effort has demonstrated that the effective point spread functions for
both point source references and extended objects are almost identical across a wide
range of seeing conditions. This fact allows for the application of deconvolution tech-
niques to further sharpen images improved via frame selection. I hope this thesis
contributes to the national defense by improving the Air Force’s space surveillance

mission effectiveness.

I'd like to thank my faculty advisor, Major Michael C. Roggemann, for his
assistance throughout this project. His constant encouragement and active interest
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I'd also like to thank my thesis committee members, Dr. Byron M. Welsh
and Dr. Theodore E. Luke, for their many suggestions and comments which greatly
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Abstract

The U. S. Air Force uses adaptive optics systems to collect images of ex-
tended objects beyond the atmosphere. These systems use wavefront sensors and
deformable mirrors to compensate for atmospheric turbulence induced aberrations.
Adaptive optics greatly enhance image quality, however, wavefront aberrations are
not completely eliminated. Therefore, post-detection processing techniques are em-
ployed to further improve the compensated images. Typically, many short exposure
images are collected, recentered to compensate for tilt, and then averaged to over-
come randomness in the images and improve signal-to-noise ratio. Experience shows
that some short exposure images in a data set are better than others. Frame selec-
tion exploits this fact by using a quality metric to discard low quality frames. A
composite image is then created by averaging only the best frames. Performance
limits associated with the frame selection technique are investigated in this thesis.
Limits imposed by photon noise result in a minimum object brightness of visual mag-
nitude +8 for point sources and +4 for a typical satellite model. Effective average
point spread functions for point source and extended objects after frame selection
processing are almost identical across a wide range of conditions. This discovery
allows the use of deconvolution techniques to sharpen images after using the frame
selection technique. A new post-detection processing method, frame weighting, is
investigated and may offer some improvement for dim objects during poor atmo-
spheric seeing. Frame selection is demonstrated for the first time on actual imagery
from an adaptive optics system. Data analysis indicates that signal-to-noise ratio
improvements are degraded for exposure times longer than that allowed to “freeze”

individual realizations of the turbulence effects.
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- FRAME SELECTION PERFORMANCE LIMITS
FOR STATISTICAL IMAGE RECONSTRUCTION
OF ADAPTIVE OPTICS COMPENSATED IMAGES

1. Introduction

1.1 Motivation

~ Astronomers have long realized that atmospheric turbulence limits the capa-
bility of ground-based telescopes to properly resolve objects beyond the Earth’s at-
mosphere. Prior to the space age, this problem was purely a concern of astronomers.
The post-World War II era brought the limitations of atmospheric imaging to the
forefromt of cold war national defense as our nation grappled with the Soviet Union’s
space advances. Today, the United States faces an ever growing number of poten-
tial adversaries with satellite launch capability. Clear, resolvable images of space
objects from ground-based telescopes are an absolute requirement to determine an

opponent’s intentions in space.

The U.S. Air Force obtains some of its space surveillance imagery from the
Air force Maui Optical Station (AMOS) located on the island of Maui, Hawaii [31].
The 1.6 meter telescope uses adaptive optics to compensate for atmospheric turbu-
lence effects. Unfortunately, adaptive optics cannot completely counter these effects;

therefore, linear reconstruction is used to improve the compensated images [31].

Linear reconstruction consists of collecting many short exposure images of a
given object. The use of short exposure images offers an opportunity to “freeze”
an individual realization of the turbulence effects [32]. Individual images are also
recentered to eliminate random image motion due to tilt. Many recentered images are

then averaged to improve the image frequency spectrum signal-to-noise ratio (SNR).
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A single, SNR-improved image is then sharpened using deconvolution methods such
as the inverse filter or Weiner filter [31]. Computer simulation has shown that it is
possible to increase the SNR of a reconstructed image by implementing a simple data
sifting method on a data set of short exposure images [32]. Two questions naturally
come to mind: “Under what range of conditions can frame selection be applied to
images?” and “Will SNR improvements translate to visibly superior deconvolved

images?”

1.2 Problem Statement

This thesis develops performance limits for the frame selection image recon-
struction technique and then demonstrates the technique on actual and simulated

images.

1.3 Approach

This thesis addresses the problem statement by investigating the performance
limits of frame selection as they relate to improved image spectrum SNR and the
visible quality of deconvolved images. In addition, several new frame weighting
methods are investigated from an image spectrum SNR perspective. To achieve

these goals, the following research questions are addressed:

1. What are the performance limits associated with frame selection as a func-

tion of key optical parameters?

2. What optical parameters have the greatest effect on the average point spread
function (PSF)? Under what conditions are these PSFs similar for point source and

extended objects?

3. Under what conditions do improvements in image spectrum SNR due to

frame selection translate to visibly superior deconvolved images?
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4. Does frame weighting improve image spectrum SNR performance? Under

what conditions does this improvement take place?

5. Does frame selection improve image spectrum SNR for AMOS data in a

similar manner as seen in computer simulation?

This research effort relies on both computer simulation and actual data from
the AMOS surveillance site. Michael C. Roggemann developed a simulation package
known as HYSIM which models the effects of atmospheric turbulence with a series
of random phase screens and incorporates complete models for each element of an
adaptive optics system [32]. Recent research at the Air Force Institute of Technol-
ogy (AFIT) by Craig A. Stoudt resulted in a modification of HYSIM to incorporate
statistical frame selection and a charge coupled device (CCD) camera model [32].
This modified computer simulation was renamed HYSIMS [32]. AMOS data is pro-
cessed ysing computer code known as REDSEL. REDSEL is a modified version of
FORTRAN code written by Roggemann that reconstructs an improved image from
an ensemble of AMOS imagery. The modification consists of adding frame selection
subroutines. Deconvolution is accomplished using simple FORTRAN routines, also
provided by Roggemann, which implement the modified inverse filter and pseudo-

Weiner filter [31].

1.4 Scope

Performance limits associated with the frame selection post-detection process-
ing technique are presented in this thesis. In addition, frame weighting will be
investigated as a possible complementary technique to frame selection. The pri-
mary parameters are the adaptive optics system configuration, atmospheric seeing

conditions, frame selection rate, object type, and object brightness.

Linear reconstruction of short exposure images is the central theme of this re-
search effort. While computer simulation and actual data from an adaptive optics

system are essential, no adaptive optics system design is proposed. In addition, opti-
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cal design issues, development of new frame quality metrics, and real time processing

concerns are not addressed.

1.5 Summary of Key Results

Performance limits associated with frame selection are demonstrated as a func-
tion of key independent parameters over a wide range of test conditions. As a result,
a minimum object brightness threshold has been established for point source ob-
jects. In addition, a satellite model was used to investigate this limit representing a
generalized extended object. Expressed in terms of the apparent visual magnitude,
m,, these limits are m, = 48 for a point source and m, = +4 for the given satellite
model. More general statements are made regarding the effect of atmospheric seeing

conditions on frame selection performance.

The PSFs for point source and satellite objects were nearly identical after
applying frame selection over a wide range of conditions. This discovery points to
the successful application of deconvolution techniques to sharpen images after frame
selection. This thesis documents the first successful application of deconvolution on
images benefiting from frame selection processing. Frame selection was also applied
to actual imagery from AMOS. Experimental results were inconclusive in terms of
SNR performance because excessively long exposure times were used to collect the
data. Without adequately short exposures, frame selection cannot properly discard

the worst manifestations of the turbulence effects.

Finally, the first investigation of simple frame weighting on short exposure im-
ages was shown to provide no improvement in SNR performance, except for dim
objects. Further investigation is needed to determine if frame weighting can com-

plement frame selection in this dim object regime.
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1.6 Chapter Outlines

The following is a brief summary of the information found in each chapter of

the thesis.

1.6.1 Chapter 2. This chapter provides a short overview of the atmospheric
turbulence problem, the use of adaptive optics and post-detection image processing
to compensate for atmospheric turbulence, and the limitations of the typical adaptive
optics system. Frame selection and frame weighting principles are discussed in detail.
Finally, image sharpening through deconvolution is discussed with emphasis on the

inverse and Weiner filters.

1.6.2 Chapter 3. The methodology for conducting the research is pre-
sented in this chapter. Basic terminology is defined, the optical system model is
outlined, the computer simulation approach is justified, performance metrics are
defined, experimental independent parameters are outlined, and an approach for

handling AMOS data is developed.

1.6.83 Chapter J. The results of four simulation experiments designed
to explore frame selection performance limits and frame weighting are presented in
Chapter 4. A fifth experiment demonstrates frame selection on AMOS imagery. The

experiments and results are discussed in detail.

1.6.4 Chapter 5.  Conclusions based on the results presented in Chapter 4
are presented in this chapter. Chapter 5 concludes with recommendations for future

research efforts.

-
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II. Background
2.1 Introduction

This chapter provides the background necessary to understand the fundamental
limitations imposed by atmospheric turbulence on Air Force optics systems, and
the nee.d for image reconstruction techniques to improve image quality. Theory
associated with frame selection, frame weighting, and image sharpening through

deconvolution are presented in detail.

2.2 Atmospheric Turbulence

A continuing problem for the U.S. Air Force and the optical astronomy commu-
nity is imaging through the turbulent atmosphere. Atmospheric turbulenéé places
a fundamental limit on the resolution of optical systems by imposing random phase
aberrations on the incoming light [27]. These aberrations are caused by propagation
through random layers of turbulence which create a non-uniform index of refraction.
Thé result is a general broadening of the image point spread function (PSF) which

manifests itself as blurring and lowered resolution when compared to an ideal system.

Tile atmospheric turbulence problem begins with the heating and cooling of
the Earth by the sun. Large air masses gain heat directly from the sun during the
day. At night, heat is also coupled to these air masses as the Earth cools. As a result,
large scale temperature variations are produced. These temperature variations lead
to pressure differences which result in large scale motion of the air masses. Initial
large scale air motions break down into smaller and smaller scale motions until the
atmosphere is distributed into randomly sized pockets of air, each with its own
temperature. These pockets of air are called turbulent eddies [27]. Since the index
of refraction of air is dependent on temperature, the atmosphere has a non-uniform

index of refraction.




Three key individuals, Kolomogorov, Tatarskii, and Fried, laid the theoretical
groundwork for research into atmospheric turbulence. Kolomogorov developed a
model for how large scale turbulent eddies break down and transfer their energy into
small scale turbulent eddies as part of his work in fluid mechanics [11]. Tatarskii
then used Kolomogorov’s model as a basis for his solution of the wave equation
for propagation through weak random index fluctuations [33]. Finally, Fried used
Tatarskii’s work to derive expressions for the atmospheric coherence length, r,, as
well as the turbulence induced long and short exposure optical transfer functions

(OTFs) [3].

2.2.1 - Atmospheric Coherence Length, T,. The atmospheric coherence
length, r,, first introduced by Fried in 1966 [5], is a useful parameter describing
the image degrading effects of atmospheric turbulence. He determined the Strehl

resolution [11] achieved by an imaging system looking through turbulence to be

D\? 1 D\%
R=4 (7> / u[cos™'u — uv/1 — u?|exp { —3.44 (T—) u3 3 du, (2.1)
0 [
where D is the diameter of the aperture, ) is the wavelength of the incoming light,

and u is a normalized spatial frequency variable. The parameter 7, is defined as

ooz
ro=0.185 | ——o——— 2.2
AR z2)
where 2 is the total path length through all turbulence layers and C, is the structure

constant, a measure of turbulence strength.

Fried evaluated Equation 2.1 numerically for various values of g. He deter-
mined that the resolution of a diffraction limited system looking through turbulence
increases as D increases until D is approximately the same as 7, for long exposure
times. Any further increase in D above the r, value does not result in any signifi-

cant increase in system resolution. Therefore, it is clear that atmospheric turbulence
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imposes a fundamental limit on optical system performance, and the parameter To
is a measure of this performance limit. Typical values of 7, for astronomical view-
ing at a good observatory vary between 5 centimeters for relatively poor seeing to
20 centimeters for good seeing [11]. A typical value for good seeing is around 10

centimeters [11].

2.2.2 Long and Short Ezposure OTFs. As indicated in the previous sec-
tion, the r, parameter provides a good indication of the level of image degradation
expected under the corresponding atmospheric turbulence. Atmospheric turbulence
contributes to image degradation by attenuating the OTF at high spatial frequencies.
Image exposure time is a key factor in determining the characteristics of the OTF.
To better understand the effects of exposure time on image quality, Fried [5] devel-

oped the following expressions for the average long and short exposure atmospheric

OTFs

(Hrp(u)) = exp [—3.44 (Xfu) EJ H,(u), (2.3)

o

(Hsp(w)) = exp {—-3.44 (’—\72")2 [1 ~ (3{)—“) j } H,(u) (2.4)

where f is the focal length of the telescope, H,(u) is the OTF of the diffraction limited

telescope, and u is a normalized spatial frequency variable. The short exposure and
long exposure OTFs exhibit markedly different characteristics. The long exposure
OTF is narrow and smooth, while its instantaneous short exposure counterpart is
wider with fluctuations in magnitude and phase [11]. In addition, Fried determined
that long exposures result, in part, from random image motion, also known as tilt.
Tilt manifests itself in a broadened PSF and narrowed OTF. On the other hand,
Fried noted that sufficiently short exposures (on the order of 10 milliseconds or less)
were not significantly degraded by tilt. Instead, successive short exposure images
appear to move randomly in the image plane. Simply recentering these images during

post-detection processing or mechanically removing tilt with a fast steering mirror
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eliminates the tilt effects. This method of using the short exposure image to eliminate
tilt is used in many post-detection processing schemes. While the elimination of tilt
is important, it does not produce a diffraction limited image due to the remaining
phase aberration. Dealing with random phase effects due to atmospheric turbulence

is left to the more ambitious techniques described later in this chapter.

Based on the work of Kolomogorov, Tatarskii, and Fried, much research has
been expended in attempts to improve astronomical images taken through the at-
mosphere. Three classes of techniques have emerged: (1) pre-detection processing,
consisting of adaptive optics, which rely on purely mechanical means to correct atmo-
spheric effects before the light reaches the image plane; (2) post-detection processing
which rfalies on specialized measurements from a large ensemble of images to correct
for atmospheric effects after the data is collected; and (3) hybrid methods which

combine both adaptive optics and post-detection processing.

2.3 Adaptive Optics

- Adaptive optics compensate for turbulence induced wavefront aberrations in
real time before the light is detected at the image plane. The key components of an
adaptive optics system are the deformable mirror (DM), wavefront sensor (WFS),
and actuator control computer [29]. Voltages applied to the DM actuators allow its
figure to be changed in real time to match an estimate of the conjugate of the input
wavefront phase. The WFS senses the aberrations in the incoming wave by measuring
gradients in small subapertures of the telescope pupil [34]. This information is then
sent to the actuator control computer which adjusts the DM to apply an estimate
of the c.onjugate of the wavefront aberration. The correction imposed by the DM
cancels out the aberration leading to a narrower PSF and an improved image. This
process must occur at speeds on the order of the rate of change of the wavefront
aberration to be effective [34]. Typically, these speeds range from approximately

tens of Hertz to a few hundred Hertz [34].
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Fully compensated adaptive optics systems have individual subaperture area
approximately the square of the atmospheric coherence length, 7,, and DM actuators
placed on a square grid with grid spacing approximately 7, [30]. Fully compensated
systems for large telescopes are complex and expensive to build. A cheaper, lower
perforn;ance alternative is to build a DM with fewer actuators and use a WFS with

larger subapertures. Such a system is referred to as partially compensated [30].

Unfortunately, even a fully compensated system cannot completely eliminate
turbulence induced wavefront aberrations [34]. Some limitations include finite WFS
signal and measurement noise, finite WFS sampling, a limited number of degrees-of-

freedom in the DM, and control system time delays [30].

2.4 Post-detection Processing

Post-detection processing refers to a large variety of image reconstruction tech-
niques which attempt to overcome atmospheric turbulence after data collection. The
first attempts to post-process astronomical images relied on processing large numbers
of short exposure images without the benefit of adaptive optics. These techniques are
referred. to as speckle imaging due to the fact that the data consists of an ensemble

of uncompensated, short exposure, speckled images [19].

Labeyrie invented an important form of speckle imaging, referred to as speckle
interferometry [15], by showing that the energy spectrum of an object could be
estimated from a large data set of short exposure images. The energy spectrum,
or modulus squared of the Fourier transform, encodes unique information about an
object. However, the phase of the Fourier transform (phase spectrum) is also needed
to create an image [19]. Two common techniques for obtaining the phase spectrum

are the Knox-Thompson [14] and bispectrum methods [16].

Speckle imaging techniques are limited by low signal-to-noise ratio (SNR) per-
formance due to randomness in the OTF and the photon-limited nature of many

astronomical images. This limit is so severe that the SNR at mid and high spatial
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frequencies for a single frame reaches a maximum of unity for an infinitely bright
point source and is typically smaller for extended objects [11]. Averaging many
frames can be used to improve SNR performance but only at the expense of han-

dling several hundred to a few thousand frames of independent data.

An alternative post-detection processing method that does not suffer from such
severe SNR limitations is deconvolution from wavefront sensing (DFWS) [7, 26]. This
method uses simultaneous measurements from a WFS and a single, short exposure
image of the desired object. The WFS data provides an estimate of the instantaneous
system OTF that generated the short exposure image. This reference is used in a
deconvolution scheme to remove the degrading effect of the combined atmosphere-
optical system OTF from the image. Unlike speckle interferometry, DEWS provides
the modulus and the phase of the object directly but with the added expense of

WF'S hardware and processing equipment.

In contrast to both speckle imaging techniques and DFWS, linear reconstruc-
tion relies on AO compensation and averaging to overcome randomness in short
exposure images resulting in higher SNR [31]. Deconvolution can then be used to
lessen image blurring by boosting previously attenuated high spatial frequencies [31].
Past experience with linear reconstruction has shown that some images in a given
short exposure data set are better than others [32]. This observation suggests two
related linear reconstruction methods, frame selection and frame weighting, which
seek to process high and low resolution images differently to further improve SNR
perforniance. The next section deals with the first step in both the frame selection

and frame weighting methods, calculating image quality.

2.5 Quality Metrics

In order to properly apply frame selection or frame weighting, it is essential

to have a well understood metric that attaches a numerical value to the quality of
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each frame. Many such metrics exist, but it is logical to turn first to common optical

system quality metrics.

One such quality metric is the Strehl ratio [25] defined as

o I

= Tn)d (25)

where 7 is the OTF of the atmosphere-optical system, 7, is the OTF of the optical
system with no atmosphere present, and f is a spatial frequency variable. S is best
understood as the ratio of Fried’s resolution parameter, R of Equation 2.1, in the
presence of atmospheric turbulence versus the ideal case of no atmospheric turbu-
lence. As reported by Stoudt [32], Marechal developed a convenient relationship

between S and mean squared phase distortion over the optical system aperture, A%

S~ (1 - %Az)z (2.6)

where A? must be less than unity. Mahajan [17] conducted error analysis on Equation

2.6 as well as deriving his own approximate relationship between S and AZ:
S ~ exp (A_2) . (2.7)

Mahajan’s error analysis showed that Marechal’s Equation 2.6 gives S with less
than 10 percent error as long as § > 0.6. Mahajan’s Equation 2.7 has a broader
allowable range of S such that it provides 10 percent error if S > 0.3. One important
drawback to using S as a frame quality metric is its dependence on the OTF, 7. T

can be determined using

_ 1)
m(f) = o) (2.8)

where I is the image spectrum and O is the object spectrum [10]. To determine
T, it is necessary to have knowledge of both I and O. In practice, only the image

spectrum is usually available.
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O’Neill [25] provides a discussion of three additional image quality metrics:

Relative Structural Content, T

)
- P& 2.9
0*(z,y)
Correlation Quality, @
g = {&:¥)oy) (2.10)
0*(z,y)
Fidelity Defect, F’
F=1-D (2.11)
— 2
D — [0($a M) y)] (212)

0*(z,y)
where i(z,y) is the measured image, o(z,y) is the original object, (z,y) are image
plane coordinates, and the bar indicates averaging. These three metrics are related

by the following equation:
1

Fidelity Defect differs from Strehl ratio due to the fact that it is a normalized mea-
sure of mean squared error between object and measured image. Some research
indicates that mean squared error is not a good representative of human visual qual-
ity assessments [18, 24]. This discrepancy between mean squared error and human

vision is not well understood [24].

Unfortunately, O'Neill’s quality metrics also require prior knowledge of the
object. In 1974, Muller and Buffington [22] developed eight quality metrics, seven of
which do not require any prior knowledge of the object. They define these quality
metrics, also known as “sharpness functions”, as functions which reach a maximum

value for unaberrated images. Muller and Buffington’s eight sharpness functions are
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&z//ﬂ@mmw (2.14)
$» = (0,0) (2.15)

Sa= [ [ m(e,y)iz,y)dedy (2.16)
5= | o

&z//W@wM@ (2.18)
—//i(x,y)rzda:dy, r? =22 4+ 42 (2.19)
&=—//mm@mm%wmw (2.20)

_//|i(x,y) — o(z,y)|*dzdy (2.21)

where m(z,y) is known as the mask function. If m(z,y) is a good replica of the
undistorted image, S; is a good sharpness definition which reduces to S; when dis-
tortion is removed [22]. Muller and Buffington were able to prove that Sy, S3, S, Ss,
and Sg reach maximum values for an unaberrated image. In addition, they provide
evidence that S5, S, and Sy also reach maximum values for an unaberrated im-
age under typical imaging conditions. The next section provides examples of frame

selection implementations using some of the quality metrics discussed above.
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2.6 Frame Selection

The basis of frame selection is to choose the best quality or highest resolution

frames for averaging such that

1
M “

1

Mz

Is(u,v) = Ii(u, v) (2.22)

Il
—

where Ig(u,v) is the average image frequency spectrum due to frame selection,
I;(u,v) is the image frequency spectrum of an individual frame in the frame selec-
tion subset, M is the number of frames in the selected subset, and (u,v) is a spatial
frequency. Figure 2.1 provides a visual representation of the process associated with
Equation 2.22. N images are collected and each transformed to the frequency spec-
trum with the Fourier transform. An image quality metric, such as those developed
by Muller and Buffington [22], is used to provide a numerical representation of frame
quality. The images are then ranked based on the quality metric determination, with
the worst images being discarded. SNR is calculated to aid in comparison between
image quality averaging all IV frames and image quality averaging just the M frames
in the selected subset. The rest of this section provides a historical review of frame
selection research as well as key results associated with a more recent application of

the frame selection technique to astronomical objects of interest to the Air Force.
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2.6.1 Early Applications of Frame Selection.  In 1978, Fried [6] determined
that there is a finite probability of obtaining a diffraction limited short exposure
image through the atmosphere due to the possibility that the wavefront distortion
is negligible during the exposure. He derived the following expression for the prob-

ability of getting a “good” short exposure image

D 2
Prob= 5.6 exp [—«0.1557 (—) } (2.23)

To

for ;Q > 3.5. Fried used mean squared phase distortion over the aperture, AZ

of 1 rad? or less as his measure of a “good” image. His work showed that the
probability of a diffraction limited short exposure decreases as the diameter of the
aperture increases. In fact, ;[f is limited to approximately 7 to 8 for probabilities
on the order of 1073, This rapidly decreasing probability limits the aperture size of
telescopes, which degrades the ability to image dim objects. In addition, collecting
enough short exposure images to realize a high probability of collecting a single high
quality image would be a burden on most data collection systems. For example, a
1 meter telescope at a site with an average r, of 10 centimeters would require the
collection of 1 million short exposure images to have a high probability of getting
just one diffraction limited image. Fried’s work is important because it was among
the first research efforts to rigorously demonstrate that the correct choice of aperture

for seeing conditions and proper selection of short exposure images can significantly

improve optical system performance through atmospheric turbulence [6].

Corteggiani [3] addressed two limitations to Fried’s Equation 2.23 making the

following expression valid for all values of g and A? < 1 rad?:

—0.1557 (g)2

D
log Pr [(7‘_> ,1] = (2.24)
0 11.014 35.35
exp[(g)z 18.907-1-(%)2}

To
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The notation Pr [(;’%) , 1] denotes the probability, at a given % ratio, of collecting a
diffraction limited short exposure image through the atmosphere with A2 = 1 rad?.
In addition, Corteggiani related the quality metric A? to the atmospheric coherence
length, 7,, through the relation
D D
Pr (—, A2) = Pr <——6- 1) . (2.25)
o T OA 5

Equation 2.25 indicates that relaxing the quality metric A? is equivalent to collecting

a short exposure image at a smaller value of 7,.

The work of Fried and Corteggiani established a relationship between frame
quality and optical system performance but only using the mean squared phase aber-
ration metric, A%. Hequet and Coupinout provided the first experimental validation
of the frame selection technique [12]. Their method involved collecting a large set of
short exposure images of an object, selecting the best frames using the Strehl ratio as
a quality metric, recentering the images to compensate for tilt effects, and averaging
the frames in the recentered subset to create an image of the original object. Using
Equation 2.7 and Corteggiani’s model of Equation 2.25, Hequet and Coupinout de-
termined that the Strehl ratio of an image can be improved by a factor of two when
selecting the best 10 percent of the images from the original ensemble. This tech-
nique does not account for photon and detector shot noise. In addition, Corteggiani’s
model only indirectly considers imaging wavelength since r, is proportional to the %

power of the imaging wavelength.

With frame selection firmly established as a post-processing technique by He-
quet an.d Coupinout, other researchers demonstrated similar performance improve-
ments with Muller and Buffington’s quality metrics. In 1987, Nieto and others (23]
demonstrated frame selection on the binary stars 48Vir and HRS10 using a 4 meter
telescope. They showed that the full width, half maximum (FWHM) value of the

average system PSF improved by a factor of 2.18 when selecting 10 percent of the
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iméges using the S3 quality metric of Equation 2.16 and the long exposure image as
the mask, m(z,y). In 1988, Fuensalida and others [8] performed a similar experi-
ment applying frame selection to produce high resolution images of the binary star
AG Peg using a 2.5 meter telescope. They reported qualitative improvements in the
high fréquency structure of the images with S3 as the quality metric and the long
exposure autocorrelation function as the mask. Also in 1988, Devaney and others [4]
performed a frame selection experiment with a Gaussian function the width of the
diffraction limit of the telescope as the mask. They reported very similar results to

those presented by the two previous research teams.

The results of these three research teams agree well with those presented by
Hequet and Coupinout. This agreement indicates that Muller and Buffington’s qual-
ity metrics have great potential for application on Air Force adaptive optics systems.

This fact led to more recent frame selection research at the Air Force Institute of

Technology (AFIT).

2.6.2  Recent Developments in Frame Selection.  In 1993, Craig A. Stoudst,
an AFIT graduate student, investigated frame selection of adaptive optics compen-
sated images [32]. Stoudt’s work relied on computer simulation of both point source
and extended objects over a range of seeing conditions and light levels. He evaluated
three of Muller and Buffington’s original quality metrics, S, S4, and Sy, as well as a

new metric Sg; defined as

Ss1 = / / Sore(u, v)|1(u, v)dudv (2.26)

where Sorr(u,v) is the support of the OTF. Stoudt’s use of computer simulation
allowed a much broader examination of the effects of key independent parameters
than those conducted by earlier researchers. Image spectrum SNR was used as
the primary performance measure. The independent parameters included To, Object

brightness, frame selection rate (FSR), and CCD camera noise.
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Stoudt made the following conclusions by simulating a 1 meter fully compen-

sated adaptive optics telescope [32]:

1. Frame selection with the Muller and Buffington quality metrics increases
noise reduction, thereby boosting the image spectrum SNR of the reconstructed
image. Ten to Fifteen percent improvement in image spectrum SNR is possible for
FSRs of 60-75 percent. In general, there is an optimum FSR where SNR. gain is

maximized.

2. For equivalent seeing conditions and light levels, frame selection is of greater -
benefit to point sources than extended objects. This is especia,lly true with respect
to objec.:t brightness where extended objects are limited to a minimum brightness.
Stoudt concluded that at low light levels photon noise and shot noise dominate over
the randomness of the average system OTF. He suggested frame weighting as a

possible alternative approach to better improve image quality of dim objects.

3. Frame selection improves image quality when seeing conditions limit perfor-

mance, but not when photon noise and CCD camera noise are the dominate effects.

4. The Ss; quality metric produced the highest overall image spectrum SNR

gain compared to the other metrics in the investigation.

These important conclusions and their grounding in accurate and convenient
computer simulation made this work an important step in the understanding of frame

selection performance.

2.7 Frame Weighting

Frame weighting is a method to improve image spectrum SNR by weighting
each frame based on frame quality. This thesis provides an extension of Stoudt’s work
by conducting the first investigation into combining adaptive optics compensation

and frame weighting. This technique is best understood by examining its governing

2-15




equation

N
I (1,9) = 5 5 Wili{u,0), (2.27)
i=1

where jW(u, v) is the average image frequency spectrum of the weighted image,
W; is a frame weighting vector associated Wiﬂl the ith frame, I;(u,v) is the image
frequency spectrum of an individual frame, N is the number of frames in the entire
data set, and (u, v) is a spatial frequency. Equation 2.27 is simply a weighted average
based on individual frame quality. The following sections present a discussion of
an optimum frame weighting approach followed by a more intuitive, sub-optimal

weighting scheme.

2.7.1 Optimal Frame Weighting.  As the previous discussion demonstrates,
some knowledge is already in hand regarding the frame selection technique. It is clear
that frame selection is not the best reconstruction method under certain conditions,
notablely dim, extended objects. Determination of the optimal weighting matrix,

Wi, is a key step in the application of frame weighting on these objects.

Linear minimum variance (LMV) and least squares (LS) methods have the
potential to yield optimal weighting matrices. In this case, both methods are based

on a linear degradation model cast in linear algebra notation such that
I,=HO+N (2.28)

where I; is a vector containing all the images in the ensemble, H is the atmosphere-
optical system OTF matrix, O is the object spectrum vector, and IN is an additive
noise vector [9]. While sharing the linear degradation model, LMV and LS methods

differ in their error minimization schemes.

The LMV method is based on the first and second statistical moments of the

desired parameter and disturbances. This LMV scheme uses the linear estimator
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[20]
Iy = WI, (2.29)

where Iy is a vector containing the final weighted image spectrum and W is the
weighting matrix. The goal is to derive an expression for W that minimizes the
error variance between the original object spectrum, O, and final weighted image

spectrum, Iy such that

0=0-1Iy (2.30)

is as small as possible. Unfortunately, this optimization problem is ill-defined because
the error variance is a matrix. The alternative is to minimize the sum of the variances
in each component of O. This alternative leads to the following expression for the

optimal frame weighting matrix
W = VoHT[HVOHT + V.N]__1 (2.31)

where Vp is the variance matrix of the object spectrum and Vi is the variance matrix
of the noise. Equation 2.31 is difficult to implement due to the fact that neither H
nor Vp is perfectly known. In addition, this calculation is computationally intense

due to the size of the matrices and vectors.

In contrast to the LMV method, the LS method does not require any stochastic
information about the parameters or disturbances. For their LS derivation, Melsa

and Cohn {20] minimize the following quadratic performance index:

J(0) = %(I,- — HOY'(I; - HO) (2.32)

where O is an estimate of the object spectrum. The O that minimizes J(O) of

Equation 2.32 is given by
Ops = (HTH)*HTI, (2.33)
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and is known as the least squares estimator. By assuming that Iy of Equation 2.29

is the least squares estimator, it is possible to derive the following equation for W:
W=HTH)'HT (2.34)

As with the LMV method, lack of knowledge of H is the primary drawback to

operational use of the LS method.

Due to the difficulty in generating an optimal solution by either of these meth-
ods, more intuitive techniques for generating frame weights will be exploited in this

thesis.

2.7.2 Intuitive Frame Weighting. Even though deriving an optimal W; is
beyond the scope of this thesis effort, it is still possible to apply frame weighting
via a more intuitive approach. Unlike the LMV and LS methods, the goal of this

approach is to improve image spectrum SNR not generate an optimal O estimate.

In this simplified approach, the frame weights, W;, are constants and related
to the quality metric value via a weighting function. A weighting function translates

a given frame quality into a single weight such that
Wi = fu(S:) (2.35)

where f, is a frame weighting function and S; is the quality metric value for the ith

frame. The frame weighting function must fulfill the following requirements:
1. Apply frame weights between zero and one.

2. Apply frame weights close to or equal to one for high resolution frames and

weights close to or equal to zero for low resolution frames

3. Maintain a close proportional relationship between frame weight value and

frame quality metric value. Depending on the particular weighting function imple-
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mentation, maintaining this relationship may be difficult in cases where all frames
in an ensemble are either very good or very bad. Hence, intuitive frame weighting is
not optimal and does not necessarily minimize any error metric as would be possible

with a LMV or LS approach.

2.8 Image Sharpening through Deconvolution

As discussed in a previous section, linear reconstruction incorporating frame
selection uses quality based selection and averaging to overcome randomness in the
measured images. The new, averaged image has a higher image spectrum SNR but
is still blurred due to attenuation of the high spatial frequencies by the atmosphere-
optical system OTF. This blurred image can be sharpened by deconvolving the
average PSF from the image after averaging [31]. Two possible schemes for this

purpose are the inverse filter and pseudo Wiener filter.

2.8.1 Inverse Filter. The inverse filter is based on the most simple of
principles, directly reversing the process by which the image was made to return to
an accurate estimate of the original object. Based on a linear systems model and

Fourier optics [10], the image was created via
. I(u,v) = H(u,v)O(u,v) + N(u,v) (2.36)

where I(u,v) is the degraded image, O(u,v) is the original object, H(u,v) is the
atmosphere-optical system OTF, and N(u,v) is an additive noise term. In the
absence of noise, returning to the original object involves solving Equation 2.36 for
O(u,v). Unfortunately, the noise term, N(u,v), will not allow a direct return to
the original object spectrum. This leads to the following formulation for the inverse
filter:

~ I(u,v)

O(u,v) = m (2.37)
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where O(u,v) is an estimate of the original object spectrum and H (u,v) is an esti-
mate of the OTF [9]. In many atmospheric imaging applications, H(u,v) is provided
by imaging a reference point source, such as a star near the desired object [31]. This

filtering scheme is criticized for heavily amplifying high frequency noise [31].

The inverse filter can be modified to better handle noise effects. One such
modified inverse filter [31] creates an estimated object spectrum in exactly the same

manner as KEquation 2.37 with three modifications:

1. O(u,v) is set to zero for spatial frequencies where H (u,v) is zero to restrict
division by zeros in Equation 2.37. This technique eliminates spatial frequencies

from the image that are not in H(u,v).

2. Any value O(u,v) with value greater than O(u = 0,v = 0) is reduced to
O(u =.0,v = 0). This method deals with the unphysical situation where spatial
frequencies with (u,v) > (0,0) have higher amplitude than the DC component of

the image.

3. A circularly symmetric triangle filter with a user defined cutoff frequency
is applied to the output after steps 1 and 2. This filter handles noise outside the
passband of the optical system.

The modified inverse filter has been applied to experimental data from an
adaptive optics system [31]. While it is not a minimum error method, the modified

inverse filter can provide excellent results for the human visual system [31].

2.8.2 Weiner Filter. Unlike the modified inverse filter, the Weiner filter
is an optimal deconvolution scheme in a constrained least squares sense [9]. The

governing equation is _
’ N I(u,v)H*(u,v)

O(u,v) = —= (2.38)
| (u, )2 + 25

where H* (u, v) is the complex conjugate of the estimated atmosphere-optical svstem

OTF, S, (u,v) is the power spectrum of the noise, and S,(u,v) is the power spectrum
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of the object [9]. The formulation of Equation 2.38 is not readily applicable to an
operational environment due to the need for knowledge of S,(u,v). A directly appli-
cable form of the Weiner filter, the pseudo Weiner filter, circumvents this limitation

via the modified expression

O"'(u 'U) _ I(ua ’U)FI*(’U,, U)
a 1 (4, 9)]? + 558w

(2.39)

where SNR(u,v) is the image spectrum SNR and « is a user selected parameter
(31]. The ratio SNREy controls the amount of noise reduction or “smoothing” at
each spatial frequency. Notice when o = 0 the pseudo Weiner filter becomes an
inverse filter. Therefore, the fact that a large value of SINR(u,v), indicating low

noise, results in inverse filter-like characteristics appeals to common sense.

The Weiner filter tends to result in overly-smoothed estimates of the object
[31]. Asindicated in an earlier section, some research indicates that the mean squared
error metric may not provide the best images for human visual system consumption

[18, 24].

2.9 Limits of Current Knowledge

Based on the work of Stoudt and others, frame weighting appears to be a
promising technique to improve linearly reconstructed images, especially dim objects.
In order to fully assess its potential, the following limitations in our current level of

understanding of both frame selection and frame weighting must be overcome.

As noted previously, Stoudt examined frame selection performance on a limited
set of independent parameters for one adaptive optics system implementation estab-
lishing the trade between image blurring and SNR.. Unfortunately, our understanding
of the limitations of frame selection under dim object conditions is incomplete. In
addition, the SNR performance trade off between the photon noise limited and OTF

variance limited situations is not adequately understood for frame selection.
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This chapter has established that frame selection improves the image spectrum
SNR of reconstructed images. As discussed above, these SNR improved images are
often deconvolved with an estimate of the average atmosphere-optical system OTF
to boost high spatial frequencies and increase resolution. In many cases, a bright
point source, such as a star, will be used as this OTF estimate. In order for the
point source to perform as an adequate OTF estimate, the average system PSF's of
reference point source and image must be similar. None of the previous research
efforts has examined the effect of frame selection on the average system PSF. This
gap in our knowledge is a key point. Without a similarity between reference point
source and image PSFs, it is not possible to fully realize improved resolution from

the SNR improved, frame selected images.

Fi.nally, while some performance bounds have been established for frame se-
lection, no such studies have been conducted for frame weighting of short exposure

images.

2.10 Summary

Atmospheric turbulence imposes a fundamental limit on optical system perfor-
mance. Adaptive optics enhance image resolution, but cannot completely eliminate
turbulence induced phase aberrations. Post-detection processing of adaptive optics
compensated images is needed to further enhance image quality. Frame selection is
a promising post-detection processing technique that offers significant improvement
in image spectrum SNR over a substantial range of performance conditions and ob-
ject brightness. A complete investigation of frame selection performance over a wide
range of conditions is presented in this thesis. This effort includes demonstrating the
superiority of images after frame selection and sharpening with deconvolution tech-
niques. In addition, frame weighting is examined as a possible method for improving
the image quality of dim objects. The methodology for conducting this investigation

is developed in the next chapter.
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III. Methodology
3.1 Introduction

Chapter two provided a brief overview of the atmospheric imaging problem
and several possible solutions. The Air Force uses one of these solutions, adaptive
optics (AO), to compensate for the random phase aberrations due to atmospheric
turbulence. Unfortunately, AO cannot completely compensate for all phase fluctu-
ations due to the atmosphere [34]. Instead, residual phase aberrations corrupt the
AO compensated wavefront which results in a degraded image. To improve this
degraded image, some form of post-detection processing is needed. The previous
chapter showed that researchers have improved images from passive optics systems
using a technique known as frame selection [4, 8, 23]. In addition, recent research at
the Air Force Institute of Technology (AFIT) has shown that images from AO sys-
tems can also be improved using frame selection [32]. In order to fully benefit from
this promising technique, it is important to understand its performance limits. A
methodology for studying frame selection performance limits and another alternative
post-processing technique, frame weighting, is developed in this chapter. Section 3.2
defines the terminology to be used throughout the remainder of this investigation.
Section 3.3 justifies the use of the Sg; frame quality metric. Section 3.4 establishes
the basic image model. Section 3.5 justifies the use of computer simulation for both
frame selection and frame weighting studies. Section 3.6 justifies the use of image
spectrum statistics as a performance metric. Section 3.7 identifies the independent
variables associated with these experiments. Finally, section 3.8 introduces addi-
tional information associated with the collection and processing of actual Air Force

Maui Optical Station (AMOS) data.
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3.2  Terminology

A working knowledge of the terms and concepts associated with a research
investigation is essential for complete understanding of the work. This section is
organized according to general, frame selection, and frame weighting terminology

categories.

3.2.1 General Terminology. The following terminology is of a general

nature and applies to both frame selection and frame weighting.

Composite image: an image resulting from re-centering and averaging multiple

short exposure images (frames) of the same object.

Compensated image: a single image produced by an AO system. Multiple
compensated images of the same object can be used to produce a composite image

with improved resolution.

Deconvolved tmage: an image whose high spatial frequency content has been
boosted by using one of many deconvolution techniques such as the inverse and

pseudo-Weiner filters [31].

Quality metric: an algorithm which results in a single numerical value when
applied to an image. Quality metric magnitude is directly related to a designated

quality or feature.

3.2.2 Frame Selection Terminology. = The following terminology applies to

frame sglection.

Frame selection rule: a three-step process for choosing a subset of images for

further processing.
1. Calculate a frame quality metric value for each frame in the data set.

2. Sort the images in the data set from highest to lowest based on the quality

metric value.
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3. Select the highest value images for processing.

Frame selection rate (FSR): the ratio of the number of frames M in the selected

subset to the number of frames N in the original ensemble. Therefore,

FSR = %, M < N. (3.1)

The FSR is usually expressed as a percentage value. An FSR of 50 percent means
the selected subset consists of the “best” 50 percent of the frames from the original

data set based on the frame quality metric values.

3.2.8 Frame Weighting Terminology.  The following terminology applies to

frame weighting.

Frame weight: a single numerical value assigned to each frame in the ensemble.

Frame weight values must adhere to the following mathematical rule:
0< W<, (3.2)

where W is a constant frame weight value. Larger frame weights are associated with
the best frames in a data set. Smaller weights are associated with the worst frames.

The designations “best” and “worst” are related to the quality metric value.

Frame weighting function: an equation, algorithm, or other scheme which

translates a given frame quality to a single frame weight.

Frame weighting rule: a three-step process for calculating frame weights for

each image in the data set in preparation for further processing.
1. Calculate a frame quality metric value for each frame in the ensemble.

2. Sort the images in the ensemble from highest to lowest based on the quality

metric value.

3-3




3. Calculate a frame weight value for each image based on either a quality-

based or function-based frame weighting scheme.

Quality-based frame weighting: a frame weighting scheme that applies weights

- which are directly proportional to the quality metric numerical values.

Function-based frame weighting: a frame weighting scheme which applies weights
based on a pre-defined function and the relative quality ranking of the frames.

Weights are only indirectly related to actual quality metric numerical values.
Weighted image: image processed using frame weighting.

Now that terminology pertaining to the frame selection and frame weighting
techniques has been established, it is necessary to justify the use of the of a quality

metric and establish appropriate system models.

3.3 Sgs1 Quality Metric

In Chapter two, a set of sharpness functions developed by Muller and Buffin-
gton [22] were introduced. These functions reach their maximum value for unaber-

rated images. One of these sharpness functions, S, is defined as:

S; = //iz(x,y)dxdy, (3.3)

where i(z,y) is the measured image and (x,y) are image plane coordinates. Stoudt
[32] established a modified frequency domain version of Equation 3.3 by applying

Parseval’s theorem (2] such that:

Ss1 = //SOTF(u,v)|I(u,v)|2dudv, (3.4)

where I(u,v) is the Fourier transform of i(z,y), Sorr(u,v) is the support of the
optical transfer function (OTF), and (u,v) is a spatial frequency. Since frequency

components beyond the extent Sorp are obviously manifestations of noise, Ss; has
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improved noise reduction capabilities when compared to the original S; sharpness
function. Stoudt’s work indicated that the Ss; quality metric yielded superior image
spectrum SNR performance when compared to the other quality metrics in his study
[32]. Based on this fact, the Sg; quality metric is used for all applications of frame

selection and frame weighting.

3.4 System Models

The linear, shift invariant model for an imaging system, as presented by Good-
man [10], is utilized in this thesis. In the absence of noise, an image is created by

the convolution of the original object and the point spread function (PSF) such that

i(2,y) = o(z,y) * h(z,y), (3.5)

where i(z,y) is the noiseless image, o(z,y) is the object intensity, h(z,y) is the
PSF, and * indicates the two dimensional convolution operation. Taking the Fourier

transform of both sides of Equation 3.5 yields
I(u,v) = H(u,v)O0(u,v), (3.6)

where O(u,v) is the Fourier transform or object spectrum of o(z,y) and H(u,v) is
the Fourier transform of the PSF or the OTF. Equation 3.6 allows image formation

to be performed without the computational difficulties associated with convolution.

The model of Equations 3.5 and 3.6 must account for noise effects. Noise de-
grades a compensated image formed through atmospheric turbulence due to sources
of randomness in the image formation process. Two sources of randomness are: (1)
randomness due to fluctuations in the instantaneous OTF and (2) randomness due
to random arrival time and location of image photo-events. This noise process is

known as a doubly stochastic Poisson random process [11].
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Turbulence causes a random aberration in the telescope pupil. As noted in

chapter two, an AO system cannot completely compensate for this effect resulting in
a random, residual phase aberration, ¢;(z,y). If the telescope is diffraction limited

without atmospheric turbulence, the instantaneous OTF due to €;(z,y) is [10]

1 .
Hi(u,v) = N //P(w,y)P(a:—-u)\f,y—'u)\f) exp{jlei(z,y)—e(z—uAf, y—vAf)]}dzdy,
(3.7)
where P(z,y) is the telescope pupil function, A is the mean wavelength, f is the

focal length of the imaging system, and N is given by:

N = // | P(z,9) |* dzdy. (3.8)

Equation 3.7 clearly shows that the instantaneous OTF due to atmospheric turbu-
lence, H;(u,v), is a random process [11]. In turn, this random OTF forms an image,

via Equation 3.6, which is also a random quantity.

The number and arrival locations of photo-events are random and governed by

Poisson statistics [11]. The standard model for a photon-limited image is

i(z,y) = 2_:16(517 — Tn, Y — Yn), (3.9)

where K is the total number of photo-events in the image plane, and (z,,y,) is the
locatiod of the n*® photo-event [11]. Since this study is particularly concerned with

the image spectrum, the Fourier transform of Equation 3.9 is provided as

K
I(u,v) = Y} e 92ruantomm), (3.10)

n=1

Image spectrum signal-to-noise ratio (SNR) is key to objective performance

analysis of the frame selection and frame weighting techniques. The standard ex-
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pression for single frame image spectrum SNR is defined as [13, 28]:

| E[I(x,v)] |

SN Ba(ur0) = Var[I(u,v)) ,

(3.11)
where E[-] is the expectation operator, and Var[I(u,v)] is the variance of the mea-
sured image spectrum. SN R; can be viewed as an indicator of the precision of image
information at a given spatial frequency. Using Equation 3.11 and conventional tech-
niques for analyzing doubly stochastic Poisson random processes, the single frame

image spectrum SNR becomes:

K | On(u,v) || E[H(u,)]) | ’
VE + X | On(u,v) 2 Var[H(u,v)] + Po?

SNR;(u,v) = (3.12)
where K is the average number of photo-events per image, O,(u,v) is the object
spectrum normalized to unity at (u,v) = (0,0), Var[H(u,v)] is the variance of the
OTF, P is the number of pixels in the image spectrum array, and o is the standard

deviation of the CCD camera rms read noise [28].

Two limiting conditions on Equation 3.12 are of interest when determining the
performance limits of the frame selection technique [35]. If the OTF is deterministic,

Equation 3.12 reduces to the photon noise limited case
SNR;(u,v) = V& | On(u,v) || E[H(u,v)] | . (3.13)

On the other hand, as the average number of photo-events per image approaches

infinity, Equation 3.12 reduces to the OTF variance limited case

| B[H ()] |

SNR;(u,v) = Var[H(u,v)]

(3.14)

It is possible to make a more accurate determination of the signal in the pres-

ence of noise through averaging multiple realizations of the desired image [1]. The

3-7




SNR of a composite image created by averaging N uncorrelated short exposure im-
ages is

SNRy(u,v) = VNSNR;(u,v), (3.15)

where N is the number of short exposure images averaged to create the composite

image.

3.5 Computer Simulation

Computer simulation is a critical tool in establishing performance limits on
the frame selection technique. This tool allows convenient manipulation of key in-
dependent parameters allowing accurate performance bounds to be established with
relative ease. In addition, the frame selection and frame weighting rules are non-
linear. Therefore, a convenient expression that predicts image quality improvement

using these techniques does not exist.

The computer simulation code used in this thesis was developed by Michael
C. Roggemann [30] and further modified by Craig A. Stoudt '32]. The code in-
corporates a random phase screen generator to model atmospheric turbulence, a
wavefront sensor model, a deformable mirror model, a tﬂt correction system model,
and a charge-coupled device (CCD) camera model. Frame selection or frame weight-
ing speeific code is included as separate subroutines. Due to computer disk space
limitations, both the frame selection and frame weighting techniques require two
computer runs to implement. The first run computes the Sg; quality metric value
for each short exposure image created by the simulation. These quality metric val-
ues are stored in a file. The second run reads the quality metric file and sorts these
values from highest to lowest. The frame selection routines continue by calculating
a minimum quality metric value based on the FSR. indicated by the user. Then, the
second run recreates the short exposure images from the first run and averages only
the images with quality metric value greater than or equal to the minimum value. In

contrast, the frame weighting routines use the sorted quality metric arrayv to assign
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constant-valued weights to each short exposure image. Then, as with frame selec-

tion, the second run recreates the short exposure images from the first run. However,

all frames are weighted and then averaged to create a weighted composite image.

The code is used to accomplish three main objectives: establish objective per-
formance limits on the frame selection technique as a function of key independent
parameters, conduct a subjective comparison study of image quality with and with-
out the benefits of frame selection, and conduct a preliminary investigation of simple
frame weighting techniques. Image spectrum statistics, such as the image spectrum
SNR, are the primary objective indicators of technique performance. The next sec-

tion explores these performance metrics in detail.

3.6 Performance Metrics

Performance metrics allow for comparison between composite images processed
with and without the frame selection or frame weighting techniques. The primary

performance metric is the image spectrum SNR.

3.6.1 Image Spectrum SNR. Single frame image spectrum SNR, SNR;,
and multi-frame SNR, SN Ry, are positive, real, two-dimensional functions. Direct
comparison of two-dimensional functions is difficult. Fortunately, Fourier image
spectra exhibit a high degree of radial symmetry. This fact allows for the application
of radial averaging on the SNR; and SN Ry functions such that

- 1 2w
SNEP) = 5. /0 SNR;(p,6)dé (3.16)

and

-

- 1 27
SNEN(R) = 5 /0 SNRx(p,8)df (3.17)

where SNR;(p, ) and SNRy(p,6) are expressed in polar coordinates. Comparison

between two SN R(p) functions is made even more convenient through the use of the
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radially averaged SNR gain function, G(p). G(p) is defined as

Gp) = SNEm) oy (3.18)
SNEx(p)

where m is the radially averaged image spectrum SNR of a composite image
using the frame selection or frame weighting technique, m is the radially
averaged image spectrum SNR of a composite image formed using all the frames in |
the data set, M is the number of frames in the frame selection or frame weighting
subset, and N is the number of frames in the complete data set. G(p) allows easy
visualization of the relative gain or loss in composite image SNR that results from
the application of these techniques. Values above 1.0 at a given radial frequency

indicate a gain in SNR and an improved image while values below 1.0 indicate a loss

and a degraded image.

3.6.2 Noise Equivalent Frequency Cutoff. = Another important performance
metric that allows comparison of the signal quality of a composite image at high
spatial frequencies is the noise equivalent frequency cutoff, 7. As noted in Equation
3.6, the OTF acts as a filter which limits the Fourier spectrum. In fact, the Fourier
spectrum of an image formed by passing through a diffraction-limited circular pupil
must be zero outside the OTF radius. In contrast, noise typically exhibits a broader
frequency spectrum. In general, there will exist a frequency where signal and noise

Spectra are equal. This frequency is the noise equivalent cutoff, 5, and is defined as

n = p such that SNR;(p) = 1.0. (3.19)

7 is the highest spatial frequency where the signal is known with a minimum degree
of certainty. This performance metric will be used to support conclusions obtained

via the image spectrum SNR.
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3.6.8 Visual Image Comparison. Deconvolved images will be compared
with and without application of the frame selection technique. Unlike the image
spectrum SNR and noise equivalent cutoff frequency metrics, image comparison will
be subjective. Deconvolved images will include simulated binary stars and a repre-

sentative satellite model.

Now that the three performance metrics, G(p), 7, and subjective visual image
comparison have been defined, it is necessary to reexamine key equations associated

with the image spectrum SNR to identify the independent parameters.

3.7 Independent Parameters

In section 3.4, the composite image spectrum SNR for averaging a set of N
short exposures, SN Ry (u,v), and the single frame image spectrum SNR for a short
exposure, SNR;(u,v), were developed. The key parameters that influence image

spectrum SNR are found in Equation 3.12 which is repeated below:

K | On(u,0) || E[H(u,v)] |

SNRi(u,v) = ,
) \/7'*'?2 | On(u,v) |2 Var[H (u,v)] + Po?

(3.20)

where K is the average number of photo-events per image, On(u,v) is the object
spectrum normalized to unity at (u,v) = (0,0), Var[H (u,v)] is the variance of the
OTF, P is the number of pixels in the image spectrum array, and o is the standard

deviation of the CCD camera rms read noise [28].

3.7.1 Data Set Size, N, M. The number of short exposure images in a
data set has a direct relationship to the SNR as indicated by Equation 3.15. Taken
alone, this equation seems to indicate that larger data sets produce higher SNR.
However, the number of images in a data set is limited by the apparent speed and
rotational motion of the object as it moves across the sky. For example, a star may
appear stationary with respect to the night sky allowing tens of thousands of images

to be taken. In contrast, an artificial satellite may pass through the field-of-view
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of a ground-based telescope in a matter of minutes, limiting the number of frames
collected to a few hundred. Frame selection results in an even smaller subset of

images, M, which has a direct effect on image spectrum SNR. Both N and M can
be selected in the simulation by indicating N and the FSR.

3.7.2 Average Photo-events, K.  The average number of photo-events per
image is directly related to the visual magnitude of the object, exposure time, mean
imaging wavelength, and size of the telescope aperture minus any obstructions. The
apparent visual magnitude, m,, allows astronomers to compare object brightness in
the night sky [21]. A step in visual magnitude indicates a corresponding factor 2.5
change in brightness with smaller values of m, indicating brighter objects. Visual

Magnitude of common sky objects are shown in Table 3.1 [21]. The visual magnitude

Table 3.1 Visual Magnitude of Common Sky Objects

OBJECT my,
Sun -26.7
Full Moon -12.5
. Venus -4.3
Jupiter -2.3
Sirius -1.58
Polaris - +2.2
Typical Artificial Satellite | -0.96

of an object can be selected in the simulation by changing the value of K and another
parameter, Ky, the average number of photo-events across a single wavefront sensor
subaperture per integration time. Stoudt noted that m, had the greatest affect on

" frame selection performance of all the independent parameters in his study [32].

3.7.8 E[H(u,v)| and Var[H(u,v)]. The mean and variance of the system
OTF depends, primarily, on the strength of the atmospheric turbulence or seeing

conditions. Therefore, for the purposes of this thesis effort, the mean and variance
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of the system OTF will be considered to be most directly related to the r, parameter.
As such, the simulation allows direct input of an appropriate 7, value. Stoudt noted

that seeing conditions have a direct effect on frame selection performance [32].

8.7.4 Object Spectrum, Oy(u,v). Unfortunately, SNR is dependent on
the object spectrum which presents a potential problem when attempting to draw
universal conclusions from the study of a single object. The simulation of point
sources allows some relief from this problem due to their similarity to one another.
In fact, star images have been seen in the pertinent literature [4, 8, 23]. However.
the Air Force is primarily interested in imaging extended objects such as satellites.
Therefore, care must be exercised when drawing conclusions for all extended objects

after detailed examination of only one satellite model.

3.7.5 CCD Camera Noise.  CCD cameras in use today introduce Gaussian
additive read noise to the images. This noise is a function of the number of pixels
in the image, P, and the nbise variance per pixel, 02. The quantity o2 is dependent
on the hardware available. Typical values for high quality, commercially available,
CCD cameras range from 10-15 electrons per pixel [32]. The number of pixels is also
important. Using the minimum number of pixels possible will reduce CCD noise
effects. Stoudt developed a realistic CCD camera noise model which allows input of

the o parameter [32].

3.8 AMOS Data

-

This thesis effort incorporates the first application of the frame selection tech-
nique to actual satellite data. The data was collected using the AMOS 1.6 meter
telescope and compensated imaging system depicted in Figure 3.1 [31]. The AMOS
telescope is a closed-tube cassegrain device on an equitorial mount. The telescope
and mount are set on a rotating turntable to allow a third rotation axis. The

Cassegrain design of the telescope includes a 1.57 meter clear aperture with a 33.5
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centimeter central obscuration. Tilt is removed from the collimated wavefront with
a flat mirror. Counter-rotating prisms correct the collimated incoming light beam
for atmospheric dispersion. The beam is then split to the wavefront sensor (WFS)
and imaging portions of the system. The WFS uses a pair of shearing interferome-
ters with 152 subapertures in the telescope pupil. The deformable mirror (DM) is
a monolithic piezoelectric device with 168 actuators. The WFS and DM combine
to compensate for atmospheric turbulence effects in real time. The detector used to
collect these images was a Photometrics CH200 camera head with a class-1 Kodak
KAF 1400 chip. The detector utilizes a 1317 x 1035 pixel array which was windowed
in hardware and software to a final 128 x 128 pixel image. Dark frame and flat field

data were collected to properly calibrate for camera bias and noise.

The data consisted of satellite images and star references. The star references
were collected to provide an estimate of the atmosphere-optical system OTF for later
deconvolution. Processing of AMOS data for incorporation in this thesis consisted

of the following steps:

1)' Use AMOS image viewing software known as ALFY to view satellite images.
Select 20, 40, 60, 80, and 100 frame satellite data sets. Each data set starts with the

same beginning frame. Also collect satellite dark frames and flat fields.

2) Average all frames in each complete satellite data set and compare image
spectrum SNR. Select the data set size with the highest overall SNR for frame
selection processing. An example is shown in Figure 3.2. This step optimizes the
data set size to eliminate the degrading effects of rotational motion as the satellite

passes across the sky.

3) Perform frame selection on the optimum data set from step 2 using the
REDSEL frame selection code. Compare image spectrum SNR using FSRs of 100,
70, 50, and 30 percent.
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4) View reference star images. Select reference star data set, dark frames. and

flat fields.

5) Perform frame selection on the reference star data set using the REDSEL
frame selection code. Compare image spectrum SNR using FSRs of 100, 70, 50, and
30 percent.

6) Deconvolve satellite images using the modified inverse filter or pseudo-

Weiner filter. Satellite and star references used for deconvolution had identical FSRs.
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Figure 3.2 An Example of a Multi-frame Image Spectrum SNR Plot Used to De-

termine the Optimum Data Set Size for Frame Selection Processing of
AMOS Data. Optimum Data Set Size = 60 frames, Object = Hubble

Space Telescope, Exposure Time = 60 milliseconds, Data Collected 23
Jun 94.
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3.9 Summary

This chapter provided the basic terminology used in frame selection and frame
weighting, established a single frame quality metric, outlined the performance met-
rics used to evaluate improvements in the composite images, and identified the key
independent parameters. In addition, data reduction considerations pertaining to
AMOS images were discussed. The results of five experiments will be presented in

the next chapter.
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IV. Analysis Results
4.1  Introduction

This chapter consists of five experiments designed to establish frame selec-
tion performance limits, demonstrate the superiority of deconvolved images after
application of the frame selection technique, explore image reconstruction via frame
weighting, and demonstrate frame selection on actual Air Force Maui Optical Site
(AMOS) satellite and reference star imagery. Chapter three developed the method-
ology to conduct this investigation. The frame selection rule was defined as a three
step process in which a quality metric is calculated for each frame in the data set,
the images are sorted from best to worst based on the quality metric value, and
those images with highest quality metric value are averaged to create a composite
image. Selection is based on a user-defined frame selection rate (FSR). The FSR was
defined as the ratio of the number of frames selected to the number of frames in the
original data set. The frame weighting rule is identical to the frame selection rule
except in the last step. In contrast to frame selection, the frame weighting technique
does not discard lower quality frames. Instead, this method applies a weight either
via a quality-based or function-based weighting scheme. The weighted frames are

then averaged to form a composite image. The Sg; quality metric is defined as

Ss1 = / / Sors(u, v)|I(u, v)*dudv (4.1)

and is a variant of the S; quality metric developed by Muller and Buffington [22]. Due
to its superior performance in the Stoudt investigation [32], the Ss; quality metric
was used for all experiments in this thesis. Independent parameters and performance
metrics were also outlined in the previous chapter. To bound frame selection perfor-
mance, demonstrate subjective visual image improvement, and investigate the frame

weighting technique, five experiments were performed.
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Experiment One establishes the limits of the frame seléction technique as a
function of the independent parameters. The radially averaged signal-to-noise ra-
tio (SNR) gain function, G(p), and the noise equivalent frequency cutoff, 7, are
the performance metrics. Experiment Two establishes the effect of frame selection
on the effective average pbint spread function (PSF) as a function of the indepen-
dent parameters. Experiment Three uses simulation to conduct a subjective visual
comparison of point source and satellite objects with and without frame selection
processing. Experiment Four consists of a limited feasibility investigation of sev-
eral frame weighting schemes. G(p) is the performance metric. Experiment Five
demonstrates frame selection on actual AMOS imagery. G(p) and subjective visual

comparison of images are the performance metrics.

Some information is already available due to previous research associated with
the frame selection technique [4, 8, 23, 32]. This information is used to bound this

study.

4.1.1 Independent Parameters. Chapter Three identified the following
independent parameters that impact image spectrum SNR: data set size (N), frame
selection rate (FSR), the average number of photo-events per image (K), object
spectrum O(u, v), atmospheric seeing conditions (7,), and the charge coupled device
(CCD) detector noise characteristics (P, 0?). Thanks primarily to the work of Stoudst
[32], the following restrictions and emphasis were placed on each parameter in order

to better bound the study:

1. Data set size, N, was 500 frames for all simulation runs. Data set size was

optimized for AMOS data as noted in Chapter Three.
2. Frame selection rate, FSR, is a free parameter in this study.

3. Average number of photo-events per image, K, is a free parameter in this

study. The minimum apparent visual magnitude of an object, m,, that yields im-
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proved image spectrum SNR after frame selection processing is a key performance

limit investigated in Experiment One.

4. Objects will consist of a simulated point source and satellite. The satellite
model is a CAD rendering of a typical space satellite as shown in Figure 4.1. The
satellite was modeled as being 12 meters in length and in an orbit 500 kilometers

above the surface of the earth.

5. Atmospheric seeing condition, r,, is a free parameter in this study. A wide

variety of seeing conditions are modeled.
6. Number of pixels, P, is fixed at 2562 by the simulation image output size.

7. CCD rms read noise variance, o2, is fixed at 15 electrons per pixel to reflect

a realistic, state-of-the-art detector unless otherwise noted.

4.1.2  Adaptive Optics (AO) System Parameters. The simulation experi-
ments utilized two AO system configurations. The two systems differ only in the
deformdble mirror (DM) actuator spacing. AO case 1 has the DM actuator spac-
ing tied closely to wavefront sensor (WFS) subaperture size (DM actuator spacing
= 11 centimeters, WFS subaperture size = 10 centimeters). AO case 2 has the
DM actuator spacing larger than the WFS subaperture size (DM actuator spacing
= 22 centimeters, WFS subaperture size = 10 centimeters). The addition of AO
case 2 allowed a greater ability to study performance of frame selection on partially
compensated AO systems. All other parameters were common to both system config-
urations. The simulated AO system had a 1 meter diameter telescope with no central
obscuration. The imaging and wavefront sensing wavelength was 500 nanometers.
The fractional bandwidth of the telescope was modeled as 10 percent. Transmission
efficiency from the top of the atmosphere to the wavefront sensor and imaging cam-
era was 50 percent. The simulation modeled an intensity splitter to send 40 percent

of photons to the image plane and 60 percent to the wavefront sensor.
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4.2  Experiment One

This is the primary experiment to establish performance limits on the frame
selection technique as a function of the key parameters. First, the fundamental
limit on the frame selection rule, photon noise, is used to predict SNR performance.
Then, theoretical predictions are verified using compuﬁer simulation with the image

spectrum SNR as the primary performance metric.

4.2.1 Theoretical Performance Limits.  Recall the single frame image spec-

trum SNR expression from Chapter Three:

K | On(u,v) || B[H(u,v)] |

SNR{(u,v) = ,
) \/—K'*”?2 | On(u,v) |2 Var[H (u,v)] + Po?

(4.2)

where K is the average number of photo-events per image, On(u,v) is the object
spectrum normalized to unity at (u,v) = (0,0), and Var[H(u,v)] is the variance of
the optical transfer function (OTF) [28]. By multiplying numerator and denominator

of Equation 4.2 by —I?_l, this expression becomes,

SNR;(u,v) =

(4.3)

| On(v,0) || E[H(u,v)] |

VE '+ | Onlu,v) |2 Var[H(u,v)] + B “Po?

Close examination of the denominator of Equation 4.3 reveals three sources of ran-
domness, photon noise, noise associated with atmosphere-optical system OTF vari-

ance, and CCD camera noise effects.

Photon noise is associated with the random number and arrival time of photons
in the image plane. It is directly related to the K~! term in Equation 4.3. In this
case, if the object is sufficiently dim (K small) or the OTF is deterministic, photon

noise will dominate the expression, reducing Equation 4.3 to

SNRy(u,v) = VE | On(w,) || E[H(u,v)] | - (4.4)
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Notice that the Var[H (u,v)] term does not appear in Equation 4.4. AO systems
and post-detection processing schemes, such as frame selection, sharpen images by
reducing the OTF variance, Var[H (u,v)]. With photon noise as the dominant effect,
this quantity plays a limited role in the image spectrum SNR calculation. In other

words, AO and frame selection cannot improve a photon noise limited image.

On the other hand, the randomness of the OTF may dominate the SNR. When

the OTF variance is the dominant effect, Equation 4.3 becomes

| BlH@) |
Var[H(u,v))

SNR;(u,v) = (4.5)
Equation 4.5 represents the condition in which frame selection can best improve

image spectrum SNR.

CCD camera noise effects are closely related to photon noise in that they both
depend on the average number of photo-events available in the image plane. As
Equation 4.3 indicates, CCD camera noise plays an increasingly important role as K
decreases. Figure 4.2 is an SNR gain plot versus radially averaged normalized spatial
frequency showing three values of o2 for a relatively bright point source, m, = +2.
The horizontal axis is normalized to the diffraction. limited cutoff of the optical
system. Notice that the three gain curves are virtually identical supporting the
conclusion that CCD noise effects are minimal for bright objects. However, Figure

4.3 shows that CCD noise significantly degrades a dim point source, m, = +8.

With photon noise and OTF variance established as primary limits on the
image spectrum SNR, it is possible to use the transition between these two states
as a predictor of frame selection performance. The goal is a set of theoretical plots
which aid in the visualization of the relative dominance of various noise effects. Due

to their mutual dependence on the average number of photo-events, K, photon noise
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and CCD camera noise will be grouped as a measurement noise term defined as
Measurement Noise = K~ + K Po?. (4.6)

The OTF variance caused by atmospheric turbulence will be known as OTF noise

such that
OTF Noise = | O, (u,v) |* Var[H(u,v)]. (4.7)

Figure 4.4 provides an example of this method for a point source, AO case 1, for
a noiseless CCD array (0 = 0 electrons per pixel). The vertical axis allows direct
comparison of the measurement noise and OTF noise quantities. The solid horizontal
lines provide measurement noise levels associated with the stated apparent visual
magnitude, m,. The family of curves represent the OTF noise for discrete r, values.
The relative position of measurement noise lines of visual magnitude and OTF noise
curves indicate the dominance of the respective noise effect. For example, Figure
4.4 shows a measurement noise line associated with m, = +10 below the four OTF
noise curves. In this case, the image spectrum SNR of a m, = +10 object can be
improved using frame selection processing. Plots similar to Figure 4.4 will be used
in this experiment to provide a theoretical basis for the experimental observations

made using computer simulation.
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4.2.2  Simulation Results. The following four cases: point source-fully
compensated AO, point source-partially compensated AQO, satellite model-fully com-
pensated AO, and satellite model-partially compensated AO provide representative
data used to establish key performance limits associated with the frame selection

technique. Additional SNR gain plots are found in Appendix A.

4.2.2.1 Point Source-Fully Compensated AO.  This case investigates
frame selection performance limits associated with a fully compensated AO system
imaging a point source object. This data is considered fully compensated because
To, the AO system subaperture dimension, and the AO system actuator spacing are
all approximately the same size. AO case 1 was used to generate all plots in this

section.

Figure 4.5 depicts a typical set of SNR gain curves as a function of spatial
frequency for the 70, 50, and 30 percent FSRs where m, = +2 and r, = 10 cen-
timeters. At the 50 percent selection rate, a gain in SNR occurs over 60 percent
of the diffraction limited frequency range with the greatest improvement in the mid
spatial frequencies. The peak gain occurs at 40 percent of the diffraction limit and
represents just over a 30 percent gain in SNR. As is typical of gain curves associated
with this case, reducing the FSR results in a general reduction in the improved fre-
quency range. At the same time, lower FSRs produce greater losses at low and high
frequencies. This degradation in SNR performance is due to an insufficient number
of frames in the subset to adequately reduce photon noise through averaging. This
result reestablishes Stoudt’s conclusion that there exists an optimal FSR for image

spectrum SNR performance [32].

With this key conclusion revisited, it is now possible to use theoretical data
such as that in Figure 4.4 to accurately bound performance for the key independent
parameters, m, and r,. Figure 4.6 provides measurement noise and OTF noise

data as a function of spatial frequency. The difference between Figures 4.4 and 4.6
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is that the latter models a detector with CCD rms read noise variance, o2, equal
to 15 electrons per pixel. Notice the significant impact of CCD camera noise for
this theoretical plot when compared to Figure 4.4. Figure 4.6 indicates a general
change from OTF noise to measurement noise dominance for objects of brightness
my, = +7 —+8. In addition, the r, = 10 centimeter curve has the largest peak value
which is associated with the greatest OTF variance. Greater OTF variance can
yield a corresponding increase in SNR gain in conjunction with improvements in the
mean OTF. Therefore, one possible interpretation of this theoretical data predicts
the greatest SNR gain when r, = 10 centimeters. F inally, it is apparent that OTF
variance is reduced for very poor and very good seeing conditions. This suggests

possible upper and lower performance bounds on the 7, parameter.

Computer simulation can be used to validate these predictions. Figure 4.7
depicts SNR gain curves as a function of spatial frequency for m, = 46,7, 8, and 10
with 7, = 10 centimeters and FSR = 50 percent. Peak SNR gain is clearly reduced
when m, = +8 and totally eliminated as brightness is further decreased. Figures
4.6 and 4.7 establish m, = 48 as the minimum object brightness necessary for the
frame selection rule to increase SNR for a point source and a fully compensated AO

system.

At this point, it is necessary to relax restrictions on the T, parameter in order to
gain insight into its effect on frame selection performance. First, Figure 4.8 depicts
SNR gain curves associated with 7, = 5,7, 10, and 20 centimeters where m, = +2
and FSR = 50 percent. The r, = 10 centimeter curve provides the maximum SNR
gain as predicted by the theoretical plot of Figure 4.6. In addition, the r, = 5 and
20 centimeter SNR gain curves show the least gain as predicted by their smaller
OTF variance. Figure 4.9 is similar to the previous plot but examines very poor and
exceptional seeing conditions to determine potential frame selection performance at
these extremes. The data clearly shows a minimum T, value of approximately 4 cen-

timeters. This minimum value is more a function of the AO system limitations than
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the frame selection technique. However, Figure 4.9 also shows a general degradation
of SNR gain as seeing conditions improve. While degradation in SNR gain occurs as
seeing conditions improve, gain continues to average approximately 20 percent over
the mid-spatial frequencies for the r, = 30 centimeter case. Therefore, it is possible
to conclude that frame selection will improve image spectrum SNR, to some extent,

even under exceptional seeing conditions.
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4.2.2.2 Point Source-Partially Compensated AO. The previous sec-
tion established performance limits on two key parameters, m, and r,, for a fully
compensated AO system with 11 centimeter spacing between DM actuators. As
noted in Chapter Two, a DM with a large number of actuators is complex and
expensive to build. Recent research suggests that adequate performance for many
applications is possible with fewer DM actuators [28, 29, 34]. This case investigates
frame selection performance limits associated with a less complex AO system imag-
ing a point source object. The data is considered partially compensated because r,
is much less than the DM actuator spacing used in AO case 2 (7, = 10 centimeters,
DM actuator spacing = 22 centimeters). The wavefront sensor subaperture size re-
tains the previous dimensions. The AO case 2 system was used to generate all plots

in this section.

Figure 4.10 depicts a set of SNR gain curves as a function of spatial frequency
for the 70, 50, and 30 percent FSRs where m, = +2 and r, = 10 centimeters. At
the 50 percent selection rate, the peak gain occurs at 35 percent of the diffraction
limit and represents just over a 25 percent gain in SNR. This gain is 5 to 10 percent
less than that of the previous fully compensated system. In contrast, all three frame
selection rates maintain nearly the same bandwidth for SNR gains and losses when
compared to the fully compensated case. Therefore, the net result of employing fewer

actuators is a simple reduction in SNR gain compared to the fully compensated case.

To illustrate another effect, Figure 4.11 shows the noise equivalent cutoff fre-
quency, 7, for both AO case 1 and 2. Note that frame selection has a much more
pronounced effect on 7 for AO case 2. In fact, 5 is 45 percent less for AO case 2
for a 100 percent FSR. This 7 differential is reduced to less than 10 percent for a
30 percent FSR. Frame selection seems to have the capability to improve the mid to

high spatial frequency information degraded by using fewer DM actuators.

The theoretical plot of Figure 4.12 shows a marked reduction in the OTF noise

curves for r, = 5,7, and 10 centimeters. In these partially compensated cases, OTF
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variance has been reduced. This reduction in OTF variance is due to inadequate
AO compensation resulting in an increased number of highly attenuated realizations
of the instantaneous OTF. If the instantaneous OTF approaches this attenuated
case more often, OTF variance is reduced. This lower OTF variance translates to
increased measurement noise dominance and less potential for frame selection to
benefit the composite image. As in the previous section, Figure 4.12 can be used to
make theoretical predictions regarding performance df the frame selection technique
for the m, and r, parameters. Once again, a minimum m,, of approximately +7-+8
is necessary to avoid the measurement noise limited condition. The theoretical data

also predicts the greatest SNR gé,in when 7, = 10 centimeters.

The simulation validates these predictions in Figures 4.13 and 4.14. Figure 4.13
shows that SNR gain is clearly reduced for the m, = +8 case. The m, = +7 curve
provides the minimum visual magnitude for net SNR gain across the normalized
frequency band. Notice in Figure 4.14 the distinct drop off in SNR gain for r, = 5
and 7 centimeters reflecting their drop in OTF variance. The 7, = 10 centimeter

case maintains the greatest SNR gain but only by a small margin.
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4.2.2.8 Satellite Model-Fully Compensated AO. The previous sec-
tions dealt exclusively with point source objects. However, the Air Force requires
knowledge of frame selection performance limits for extended objects, such as satel-
lites. Recalling Equation 4.2, note that the single frame SNR is a function of the
product of the mean OTF and the object spectrum. For a point source, the nor-
malized object frequency spectrum is one, containing all frequencies. This fact sets
up the OTF as the dominant term in the product. In the case of the satellite, the
object spectrum falls off much faster than the OTF, which means that the object
spectrum becomes the dominant term in determining image spectrum SNR. It is this
dependence on the object spectrum that forces a separate study of frame selection

for the satellite model.

Figure 4.15 depicts a typical set of SNR gain curves as a function of spatial
frequency for the 70, 50, and 30 percent FSRs where m, = +2 and r, = 10 cen-
timeters. At the 70 percent selection rate, a gain in SNR occurs over just less than
60 percent of the diffraction limited frequency range. The peak gain occurs at 20
percent of the diffraction limit and represents just over a 15 percent gain in SNR.
The 70 percent FSR case yields a 15 percent loss at DC and as much as an 8 percent
loss at high spatial frequencies. Lower FSRs produce greater losses at low and high
frequencies. As with the point source, this degradation in SNR performance for lower
FSRs is due to an insufficient number of frames in the subset to adequately reduce
photon noise through averaging. In general, the satellite model provides less SNR
gain than the point source for identical independent parameters. This is due to the

SNR limitations associated with the satellite model object spectrum noted above.

Figure 4.16 illustrates the dramatic difference in noise plots between the point
source and satellite model. First, the peaks of the OTF noise curves are an order of
magnitude less for the satellite model than for the point source indicating a much
higher minimum object brightness to avoid the measurement noise limited condition.

In fact, this theoretical plot predicts a minimum m, of approximately +3 to +4 for
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this satellite model. Next, it is important to note the nature of these OTF noise
curves. As expected, the satellite model object spectrum clearly dominates the OTF
noise quantity, which restricts the curves to low spatial frequencies. This dominance

tends to shift the peak SNR gains to lower spatial frequencies.

The simulation validates these predictions in Figures 4.17 through 4.19. Figure
4.17 provides clear proof that the frame selection technique requires a minimum
visual magnitude of approximately m, = +4 for this scenario. Notice in Figure 4.18
that r, = 7 centimeters provides the largest SNR gain for this satellite model. It is
important to note that imaging different extended objects may result in a variety of
results as different object spectrums alter the balance between measurement noise
and OTF noise. Finally, Figure 4.19 indicates that this satellite model needs a
minimum 7, = 4 centimeters to perform beneficial frame selection. In addition,
note that the net SNR gain across the normalized frequency band is marginal for
exceptional seeing conditions (r, = 20 and 25 centimeters). This performance is

slightly worse than that seen for point source objects.
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4.2.2.4 Satellite Model-Partially Compensated AO. This last case
investigates frame selection performance limits associated with the AO case 2 system
imaging the satellite object. Figure 4.20 depicts a set of SNR gain curves as a
function of spatial frequency for the 70, 50, and 30 percent FSRs where m, = +2
and 7, = 10 centimeters. Once again, gain is greatly reduced as fewer actuators are
used. The best overall gain occurs using the 70 percent selection rate. With the 70
percent selection rate, the peak gain occurs at 18 percent of the diffraction limit and
represents less than a 10 percent gain in SNR. This gain is 8 percent less than that
of the AO case 1 system. As expected, the net result of employing fewer actuators
is a reduction in SNR gain for a partially compensated value of 7,. In this case,
the residual phase aberration from the AO system severely degrades enough frames
to prevent frame selection from boosting SNR to the level of the fully compensated
case shown in the previous section. In other words, if most of the frames in a data

set are poor, what is there to throw away?

Figure 4.21 shows the noise equivalent cutoff frequency, 7, for both AO case
1 and 2. In contrast to the point source, frame selection has only a slightly more
pronounced effect on n for AO case 2 due to the limited high spatial frequency
content of the satellite model object spectrum. As in the previous section, Figure
4.22 can be used to make theoretical predictions regarding performance of the frame
selection technique for the m, and r, parameters. A minimum m, of approximately
+4 is necessary to avoid the measurement noise limited condition. In this case, the
theoretical data also predicts the widest frequency band of SNR gain greater than

one when 7, = 10 centimeters.

Figure 4.23 shows that the m, = +4 curve provides the minimum visual mag-
nitude for SNR gain. This limit is identical to that seen for AO case 1. Notice in
Figure 4.24 that the results are inconclusive for this partially compensated imaging
system and satellite model. No conclusions can be made regarding the r, parameter

from this data.
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4.2.8 Conclusions.  The results of this section are significant because they
establish general performance limits for frame selection as a function of the seeing
conditions, 7,, and object brightness, m,. Point source objects must be brighter
than visual magnitude +7 to +8 for frame selection to provide significant SNR gain.
The satellite model required visual magnitude greater than +4. These limits were
largely repeatable for both full and partial AO compensation cases. This minimum
brightness restriction is due to the fundamental limit imposed by photon noise and
CCD camera noise as shown by theoretical plots indicating the relative dominance
of méasurement noise and OTF noise effects. CCD camera noise has a significant
impact on the performance limits associated with frame selection processing. How-
ever, when bright objects are imaged, this noise effect is minimal. Finally, frame
selection provides the largest SNR gain for image data sets collected under average

seeing conditions.
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4.8 Ezperiment Two

Experiment One established performance limits on the frame selection tech-
nique as a function of the independent parameters. These limits are based on the
image spectrum SNR as the primary performance metric. However, the Air Force
desires visually improved images of extended objects, typically satellites. Therefore,
it is critical to understand the effect of frame selection on current operational image

collection techniques.

Operational imagery collected by AMOS is processed using an image recon-
struction method to overcome randomness in the data then sharpened using de-
convolution [31]. As discussed in Chapter Two, deconvolution techniques rely on
an accurate estimate of the effective average PSF, usually provided by imaging a
bright reference star. In order for deconvolution to achieve optimal performance,
the effective average PSF available from the reference star must be similar to the
effective average PSF associated with the satellite. As noted in Chapter Three, the
frame selection rule is nonlinear. Therefore, its effect on the PSF cannot be readily
predicted. The question then becomes, “Will the effective average PSF of a point
source be similar to the effective average PSF of an extended object after application

of the frame selection rule?”

The purpose of this experiment is to investigate the effect of frame selection on
the effective average PSF as a function of the independent parameters and establish
the similarity of PSFs for point source and extended objects. First, it is important

to examine the PSF as it relates to the parameters 7,, m,, and FSR.

4.8.1 PSF versus Independent Parameters.  The primary goal of this sec-
tion is to confirm that frame selection does not significantly alter known character-
istics of the PSF for standard linear reconstruction. When all frames in the data set
are used to form the composite image, better seeing conditions result in a narrowing

of the PSF and less image blurring. Figures 4.25 and 4.26 confirm this trend when
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frame selection is applied to a point source and satellite, respectively. As noted by
Stoudt [32], lowering the FSR results in a gradual narrowing of the PSF due to the
elimination of the worst manifestations of the atmospheric turbulence. This fact is
reaffirmed in Figures 4.27 and 4.28. Finally, the PSF is not changed for various levels
of object brightness as depicted in Figures 4.29 and 4.30.

4.8.2 PSF Comparison: AO Case 1. As noted above, frame selection
appears to affect the effective average PSF in an expected way as a function of 7,
FSR, and m,. This section establishes the high degree of similarity between point
source and satellite model PSF's for the AO case 1 system. Three example cases are
shown in Figures 4.31 through 4.33 where point source and satellite model average
PSF's are plotted for poor, average, and above average seeing conditions. The FSR is
fixed at 70 percent for all cases to reflect the optimum FSR for this satellite model.
The key observation is that the PSFs are virtually identical. Figure 4.31 shows the
most difference between point source and satellite model PSF's for r, = 5 centimeters.
However, this difference is small enough so as to be insignificant in the application

of deconvolution.

4.8.8 PSF Comparison: AO Case 2. This section investigates PSF simi-
larity between the point source and satellite model objects for the AO case 2 system.
The same three example cases as shown in the previous section are depicted in Fig-
ures 4.34 through 4.36. Point source and satellite model average PSFs are plotted
for poor, average, and above average seeing conditions. FSR is fixed at 70 percent.
As before, the PSFs are nearly identical for all three cases. The average PSFs for
the r, = 5 and 10 centimeter cases exhibit widening when compared to AO case 1,
but the 7, = 20 centimeter plots do not. This observation is due to the fact that
the DM actuator spacing is approximately the same as the 20 centimeter r, value
allowing full AO compensation to occur while using the AO case 2 system. When

T, = 5 and 10 centimeters, only partial AO compensation occurs.
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4.8.4 Conclusions.  The similarity between point source and satellite model
effective average PSF's after frame selection is documented in this experiment. This
conclusion is significant because it allows the optimal use of deconvolution techniques
to sharpen composite images after frame selection processing. In Experiment Three,
this important conclusion is applied to simulated binary stars and the satellite model

to demonstrate visual improvements in images after deconvolution.
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Figure 4.25

Figure 4.26

©

(o]
T
7
1

R\ ~—— ro = 5¢cm
A ~ - ro=10cm
+=+- 10 = 20cm

o
=)
T
—~
>

Normalized Average PSF
o © o o o ©o
N w £ (4] [+, ~I
T T T T T T
-
P

-

e
H 1 I 1 ]

o
p"y
T
-’

L

o] 0.05 0.1 0.15 0.2 0.25
Normalized Radial Distance

PSF as a Function of Radial Distance for Various r, Values, AO Case
1, Point Source. FSR = 50 percent, m, = +2

-

o

©
T
7,
1

"\ — ro = 5cm
‘\ - -~ ro=10cm
-—--r10 =20cm

o
[ed
T

>
>
1

Normalized Average PSF
© o o o o o
n w »H L4,) [+:] ~
T T T T T T
=
B
<
L
<
-
-
1 1 1 i 1 1

°©
pry
T
I
4
i

0 0.05 0.1 0.15 0.2 0.25
Normalized Radial Distance

PSF as a Function of Radial Distance for Various r, Values, AO Case
1, Satellite Model. FSR = 70 percent, m, = +2

4-43




Figure 4.27

Figure 4.28

1 T T T T T
0.9r —100% |
—— 0,
08k 70% ]
- - 50%
..... 0,
w07} 30% )
[72]
o
2.0.6f i
g
S
Z o5} .
B
N
T 0.4k -
E
2
03t .
02} i
04} -
0 1 1 1 2
0 0.05 0.1 0.15 0.2 0.25

Normalized Radial Distance

PSF as a Function of Radial Distance for FSR = 100, 70,
AO Case 1, Point Source. 7, = 10 cm, m,, = +2

50, 30 percent,

pey

o
©w
T

o
©
T

o
9
T
)
=1
ES

o
(2]
T

Nommnalized Average PSF
o o o 9o
N W N (4]
T T T T
Z

o
pry
T
7

0 0.05 0.1 0.15 0.2 0.25
Normalized Radial Distance ’

PSF as a Function of Radial Distance for FSR. = 100, 70,
AO Case 1, Satellite Model. r, = 10 cm, m, = +2

4-44

50, 30 percent,




o
o
T

—mv =42
- - mv=+4
= mV = +6

o
(o]
T
1

Nomnalized Average PSF
o e o © o o
N w S o <» ~
T T T T T T
1 1 1 L L 1

o
pry
T
1

1. L 1 1
0 0.05 0.1 0.15 0.2 0.25
Normalized Radial Distance

Figure 4.29 PSF as a Function of Radial Distance for Various m,, Values, AO Case
1, Point Source. r, = 10 ¢cm, FSR = 50 percent

-

o
©
T

—mv = +2 7
- = mv=+4
c=-mv=+6

o
@™
T
1

Normalized Average PSF
e o o o o o
N w S (e =] ~
T T T T T T
i 1 1 1 1 1

14
py
T
[

0 0.05 0.1 0.15 0.2 0.25
Normalized Radial Distance

Figure 4.30 PSF as a Function of Radial Distance for Various m, Values, AO Case
1, Satellite Model. r, = 10 cm, FSR = 70 percent

4-45




0.9

Normalized Average PSF
© o o o o o
w KL (8] (o)} ~ (00]
T T T T H T

e
N
T

0.1

I i i 1 T T |

— Point Source
- — Satellite

! { 1

Figure 4.31

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
Normalized Radial Distance

PSF as a Function of Radial Distance, AO Case 1. Comparison Plot
Showing that Point Source and Satellite Model PSFs are Nearly Iden-
tical. 7, = 5 cm, m, = +2, FSR = 70 percent

4-46




1 1 I T i I

~— Point Source

0.9 - - Satellite i

Normalized Average PSF
© ©o o o o o
w LN [é)] » ~l (0]
T T T T I T
1 1 1 1 | [

o
N
T
1

e = e

0 0.05 0.1 0.15 0.2 0.25
Normalized Radial Distance

Figure 4.32 PSF as a Function of Radial Distance, AO Case 1. Comparison Plot
Showing that Point Source and Satellite Model PSFs are Nearly Iden-
tical. r, =10 cm, m, = +2, FSR = 70 percent
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Figure 4.33 PSF as a Function of Radial Distance, AO Case 1. Comparison Plot
Showing that Point Source and Satellite Model PSFs are Identical.
To = 20 cm, m,, = +2, FSR = 70 percent
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Figure 4.34 PSF as a Function of Radial Distance, AO Case 2. Comparison Plot
Showing that Point Source and Satellite Model PSFs are Nearly Iden-
tical. 7, = 5 cm, m, = +2, FSR = 70 percent
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Figure 4.35 PSF as a Function of Radial Distance, AO Case 2. Comparison Plot
Showing that Point Source and Satellite Model PSFs are Nearly Iden-
tical. r, = 10 cm, m, = +2, FSR = 70 percent
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Figure 4.36 PSF as a Function of Radial Distance, AO Case 2. Comparison Plot
Showing that Point Source and Satellite Model PSFs are Nearly Iden-
tical. r, = 20 cm, m, = +2, FSR = 70 percent
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4.4 Experiment Three

As concluded in the previous experiment, the effective average PSF's for point
source and satellite model objects are virtually identical. This conclusion allows
deconvolution techniques to be used on images after frame selection processing with-
out degradation due to an inaccurate PSF estimate. This experiment documents the

first attempt to compare deconvolved images with and without frame selection.

The demonstration consists of deconvolving both simulated binary stars and
the satellite model. First, SNR gain curves are used to determine the FSR offering
the highest gain over the largest spatial frequency band. The pseudo-Weiner filter is
then used to deconvolve the FSR = 100 percent (standard linear reconstruction) and
optimum FSR cases for comparison. Recall Chapter Two and the following Equation

for the pseudo-Weiner filter:

~ I(u, v)H*(u,v)
O(u,v) = —
(’lL ’l)) |H('U/, ,0)12 + W

)

(4.8)

where O(u, v) is the estimated object spectrum, I(u,v) is the measured image spec-
trum, H(u,v) is the estimated atmosphere-optical system OTF, SNR(u,v) is the
image spectrum SNR, « is a user-selected parameter, and * denotes the complex con-
jugate of a quantity [31]. For the binary star cases, the oz parameter was decreased
until the primary and secondary stars achieved complete separation. A center slice
of the image plane showing primary and secondary star component irradiance and
broader;ing was used as the primary means of comparison before and after frame
selection processing. For the satellite case, the o parameter was decreased until the
images reached maximum sharpness as determined by subjective visual image obser-

vation. Subjective visual image comparison was the final means of determining the

highest resolution image.




4.4.1 Simulated Binary Star. The simulated binary star used for this
demonstration had a 1 microradian angular separation between primary and sec-

ondary ‘components. Two cases were observed as noted in Table 4.1.

Table 4.1 Simulated Binary Star Cases

CASE 7o (om) | my PRIMARY | m, SECONDARY
Full AO (AO Case 1) 10 +2 +3
Partial AO (AO Case 1) 5 +6 +7

Figure 4.37 shows a three dimensional surface plot of the fully compensated
binary star case after averaging all frames in the data set. Note that the adaptive
optics and standard linear reconstruction have reduced noise effects to a minimum.
Figure 4.38 provides gain curves for FSRs 70, 50, and 30 percent. FSR = 50 percent
provides the maximum SNR gain at mid spatial frequencies. Therefore, this FSR
is chosen for comparison against the FSR = 100 percent case. Figure 4.39 reveals
a center slice plot of the FSR = 100 and 50 percent binary star images before
deconvolution. The plots are normalized to the irradiance of the FSR = 50 percent
binary star image. Note that the 50 percent image provides an approximate 15
percent increase in irradiance for the primary component and a 5 percent increase
in the secondary component. In addition, the 50 percent image is closer to complete
separation of the primary and secondary components. Figure 4.40 shows a center slice
for the same case after deconvolution with the pseudo-Weiner filter, o = 0.5. The
50 percent image exhibits slightly more irradiance in both primary and secondary.
More importantly, the image after frame selection is narrower in both the primary
and secondary components. This increased narrowing indicates less blurring in the
FSR = 50 percent image. The frame selection technique has produced a sharper

binary star image.

-

The partially compensated AO case provides similar results. Figure 4.41 shows

a three dimensional surface plot for this case when FSR = 100 percent. As expected,
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more blurring has occurred for these degraded seeing conditions. Figure 4.42 provides
SNR gain curves which show the FSR = 30 percent case providing the maximum SNR
gain at mid spatial frequencies. However, this case also yields a significant SNR loss
for spatial frequencies 68 to 88 percent of the diffraction limit. Therefore, the FSR
= 50 percent case was used for this comparison. Figure 4.43 depicts a center slice
plot comparison before deconvolution. Figure 4.44 depicts greater irradiance and less
blurring in both components for the FSR = 50 percent image after deconvolution

with a pseudo-Weiner filter, o = 0.001.

4.4.2  Simulated Satellite Image.  As demonstrated with the simulated bi-
nary stars in the previous section, SNR gain due to the application of frame selection
can be translated into tangible image improvements after deconvolution. It has been
shown that extended objects exhibit less SNR gain than point source objects when
frame selection is used to reconstruct images [32]. The question is “Will frame selec-
tion provide visual improvements over standard linear reconstruction for extended

objects?”

Figure 4.45 shows SNR gain curves for the satellite model, 7, = 5¢cm, m, = +2.
As noted in Experiment One, these poor seeing conditions constitute a difficult test
for frame selection. The FSR = 50 percent case produces the maximum SNR gain
for the mid spatial frequencies. Therefore, this case will be used for this visual image
comparison demonstration. Figures 4.46 and 4.47 show reconstructed satellite images
before deconvolution for the 100 and 50 percent cases, respectively. Note the slight
increase in outline sharpness in the FSR = 50 percent image. Figures 4.48 and 4.49
reveal the same images after deconvolution with the pseudo-Weiner filter, e = 0.01.
The FSR = 50 percent image seems to have more detail in the upper left and lower

left solar panels.

4.4.3 Conclusions. Frame selection can provide visually superior images

for point sources as demonstrated in this experiment. The simulated binary stars
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after frame selection processing and deconvolution provided greater irradiance and
less blurring than those reconstructed with all the frames in the data set. Frame
| selection provided improvements in the satellite model image, but the differences

i were more subtle than those seen with binary stars.
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= 1 microradian, FSR = 100 percent, o = 15 electrons per pixel
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Figure 4.39 Center Slice Plots of Binary Star Showing Improvement Due to Frame
Selection Before Deconvolution, Fully Compensated AO, AO Case 1.
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Figure 4.43 Center Slice Plots of Binary Star Showing Improvement Due to Frame
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Figure 4.46 Simulated Satellite Image Before Deconvolution, AO Case 1. FSR =
100 percent, 7, = 5 cm, m, = +2, 0% = 15 electrons per pixel
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Figure 4.47 Simulated Satellite Image Before Deconvolution, AO Case 1. FSR =
50 percent, 7, = 5 cm, m, = +2, 02 = 15 electrons per pixel
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Figure 4.48 Simulated Satellite Image After Deconvolution with a Pseudo-Weiner
Filter (& = 0.01), AO Case 1. FSR = 100 percent, 7, = 5 cm, m, = +2,
o? = 15 electrons per pixel
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Figure 4.49 Simulated Satellite Image After Deconvolution with a Pseudo-Weiner
Filter (o = 0.01), AO Case 1. FSR = 50 percent, 1, = 5 cm, m, = +2,
c? = 15 electrons per pixel
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4.5 FEzperiment Four

Frame selection processing has been shown to improve images using both the
image spectrum SNR [32] and visual image comparison. However, photon noise
poses a fundamental limit on this technique. This experiment documents the initial
investigation of a new, related image reconstruction technique, frame weighting,
which may boost the image spectrum SNR of dim objects and complement frame

selection.

Recalling Chapter Two, frame weighting is defined by
1N
Iy (u,v) = I > Wili(u,v), (4.9)
i=1

where Iy (u, v) is the average image frequency spectrum of the weighted image, W; is
a frame weight associated with the ith frame, I;(u, v) is the image frequency spectrum
of an individual frame, NN is the number of frames in the entire data set, and (u,v)

is a spatial frequency. A weight, W;, is assigned to each frame such that:
1. Frame weights are between zero and one.

2. Frame weights are close to or equal to one for high resolution frames and

are close to or equal to zero for low resolution frames.

For the purposes of this experiment, weights are assigned using two approaches:
quality-based frame weighting and function-based frame weighting. Quality-based

frame weighting is implemented via the following:

. \B
Wi = (SS’ ) , (4.10)

where S; is the quality metric value associated with the ith frame, S5 is the quality
metric value associated with the best frame in the data set, and (3 is a user selected
parameter. Frame weights derived using the quality-based approach maintain an

exact proportional relationship with the original quality metric values. The 3 pa-
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rameter is used to adjust the weighting distribution for better SNR performance. An
example of quality-based frame weighting distributions for selected 3 parameters is
shown at 4.50 where lower frame order numbers denote lower quality. In contrast,
function-based frame weighting uses the relative quality ranking from the frame qual-
ity metric to fit weights via a pre-defined weighting function. Frame weights are no
longer proportional to the quality metric values but are tied only to the relative qual-
ity ranking within the data set. In this thesis, three weighting distribution functions
are investigated: exponential, Gaussian, and linear as depicted in Figure 4.51. SNR
gain plots are compared for the point source and satellite model in the following

sections.

4.5.1 Point Source.  Frame weighting for point source objects is discussed in
this section. T'wo 7, values were investigated, 5 and 10 centimeters, representing poor
and average seeing conditions. The object visual magnitude, m,, was also assigned
two values, +2 and +8, representing a standard and dim object. Figure 4.52 depicts
the quality-based weighting distributions for 7, = 10 centimeters and m, = 42. As
the information from Experiment One predicts, average seeing conditions provide
significant variance in frame quality due to increased OTF variance. Figure 4.53
shows the SNR. gain curves for this case. Each curve is referenced against the SNR
produced when all frames in the data set are used in the image reconstruction (FSR
= 100 percent). Note the significant SNR loss at low spatial frequencies. This loss is
indicative of almost all cases examined in this frame weighting investigation. Also,
note that larger § values further degrade SNR performance. Larger values of 3 do
not always provide worse performance as will be seen in later cases. Function-based
frame weighting attains approximately the same level of performance as the quality-
based approach as shown in Figure 4.54. Using this case as an example, frame
weighting does not hold promise for average seeing conditions and relatively bright

point source objects.
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The next case reveals more interesting results as 7, is reduced to 5 centimeters
and the’object visual magnitude is adjusted to m, = +8. Recalling Experiment One,
m, = +8 is sufficiently dim to be a borderline case between measurement noise and
OTF noise dominance of the image spectrum SNR expression. Figure 4.55 depicts
the quality-based weighting distributions for this case. Notice, frame quality does not
vary as much for these poor seeing conditions when compared to the previous case.
Once again, this reduced image quality variance is consistent with the observations
in Experiment One. In contrast to the results above, Figure 4.56 reveals SNR gain at
mid spatial frequencies for quality-based frame weighting. This SNR gain reaches a
maximum at 40 percent of the diffraction limit and represents a 10 percent gain over
the FSR = 100 percent case. In addition, note that the low spatial frequency losses
have been reduced as compared to the previous results. These low frequency losses
are now comparable with those exhibited by frame selection. However, Figure 4.56
also shows that frame selection still outperforms quality-based frame weighting in the
mid spatial frequencieé. Conversely, function-based frame weighting does outperform
frame selection at mid spatial frequencies as depicted in Figure 4.57. Notice that the
Gaussian distribution function outperforms the FSR = 50 percent case from about
25 to 90 percent of the diffraction limit. However, this same weighting distribution
also shows a huge SNR loss at low spatial frequencies. This significant low frequency

SNR loss may make image reconstruction difficult.

Frame weighting provides improved SNR performance for point source objects
but only under poor seeing conditions and with dim objects. The potential use of
this technique may be further limited by huge SNR losses at low spatial frequencies.

The next section documents similar analysis for the satellite model.

4.5.2 Satellite Model. The results for the satellite model follow the same
general trends established for the point source. Therefore, only one case, r, =
5 centimeters and m, = +4, will be examined. Figure 4.58 shows the quality-

based weighting distributions. As expected, frame quality variance is fairly low.
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Figure 4.59 depicts the SNR gain curves for quality-based frame weighting. Notice
the 8 = 2.5 case does provide some gain at mid spatial frequéncies but only with
substantial loss at low frequencies. Once again, the Gaussian distribution function
provides good peak SNR gain as shown in Figure 4.60. The maximum SNR gain
for the Gaussian distribution function reaches over 20 percent which outperforms
frame selection under these conditions as shown in Experiment One. As before,
this respectable gain at mid spatial frequencies is balanced by huge losses at low

frequencies.

4.5.83 Conclusions. These frame weighting schemes offer improved SNR
performance for poor seeing conditions and dim objects at mid spatial frequencies.
One possible limiting factor is the huge SNR loss at low frequencies observed for
almost all conditions. Typical image spectrum SNR values are very large at low
frequencies (on the order of 20,000 for average seeing conditions). When a constant
weight is applied, these low frequencies are reduced by a large absolute amount
when compared to mid and high spatial frequencies. Recall the defining expression

for image spectrum SNR from Chapter 3:

| ELi(u, v)] |

v/ Var|li(u,v)] ‘

Applying a frame weight to a low spatial frequency results in a large reduction in the

SNR;(u,v) = (4.11)

numerator of Equation 4.11. When compared to the FSR = 100 percent case, a huge
SNR loss is noted. At mid and high spatial frequencies, smaller absolute losses are
noted in the numerator of Equation 4.11 which are more than offset by reductions in
image spectrum variance. Hence, SNR gain is produced under some conditions. One
possible solution to this problem is to apply weights only to the mid and high spatial

frequencies. The implementation of this solution is left to future experimentation.
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Figure 4.54 Function-Based Gain Curves Referenced Against the FSR = 100 per-
cent Case Showing Performance of Function-Based Frame Weighting.
ro = 10 cm, m, = +2, Point Source, AO Case 1
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cent Case Showing Function-Based Frame Weighting versus Frame Se-
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Figure 4.60 Function-Based Weighting Gain Curves Referenced Against the FSR
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4.6 Ezperiment Five

This experiment investigates frame selection performance on actual space im-

agery from AMOS. Reference star and satellite data are examined.

4.6.1 Raw Data.

AMOS provided raw imagery on 8 millimeter data tape.

Each tape contained satellite images, reference star images, dark frames, and flat

fields. The images were processed as described in chapter three. Five data tapes

were analyzed as part of this investigation. The content of each tape is summarized

in Tables 4.2 and 4.3 below. No accurate r, information was available for any of the

data.
Table 4.2 AMOS Satellite Data
TAPE| OBJECT | EXP. (ms)| PHOTO-EVENTS | DATA SET SIZE
1| 68700 99 14211800 60
2 | 68496 HST 60 9388770 60
3 | 68899 99 602053 60
4 | 64872 60 4876170 20
5 | 62633 HST 99 22388100 80
Table 4.3 AMOS Star Reference Data
TAPE| STAR | EXP. (ms) | PHOTO-EVENTS | DATA SET SIZE
1 | HR5340 99 1950590 100
2 | HR8414 60 1171630 100
3 | HR5933 99 711670 100
4 | HR8079 60 Unayvailable Unavailable
5 | HR8684 99 605835 50
4.6.2 Reference Star Results. First, consider frame selection performance

on reference star data. Figures 4.61 and 4.62 illustrate improvement in image spec-

trum SNR similar to simulated point source data. An FSR of 70 percent provides an
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average 10-15 percent gain between 10 and 40 percent of the diffraction limit. This
optimum FSR falls within the expected 60-75 percent rate established in previous
work [32]. This case illustrates the potential for SNR gain on actual point source

imagery.

Overall, the AMOS data did not show the impressive performance gains seen
on simulated point source data. Figures 4.63 and 4.64 illustrate a more typical case
with SNR loss at both low and high spatial frequencies and only minimal SNR gain
between 50 and 70 percent of the diffraction limit. Lower than expected performance
is most likely due to the long exposure times used by the AMOS facility. Fried
suggested 10 milliseconds as a suitable exposure time to “freeze” a single realization
of the atmospheric turbulence [6]. Exposure times on the order of 60-100 milliseconds
combine several realizations of the atmospheric turbulence thereby eliminating the

opportunity to discard the worst degrading effects.

4.6.83 Satellite Results. AMOS satellite imagery is subject to the same
limitations in regard to exposure time as discussed for reference stars. However, it
is still possible to demonstrate some level of performance gain as shown in Figures
4.65 and 4.66. An FSR of 70 percent provides an average 5-10 percent SNR gain

across all spatial frequencies.

The ultimate goal of this technique is to provide visually improved images.
As discussed previously, providing examples of visually improved satellite images is
difficult due to the lack of an objective performance metric. Figures 4.67 through 4.72
provide a subjective example of visual image improvement. Figures 4.67 and 4.68
establish SNR gain using the 70 percent FSR for spatial frequencies greater than 40
percent of the diffraction limit. Figure 4.69 shows the average image using all frames
in the data set and Figure 4.70 shows the average image using the best 70 percent of
the frames in the data set. There is no visual difference between these two images.

Both images have had their high spatial frequency content severely attenuated by
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the atmosphere-optical system OTF. To observe any improvement, these averaged
images must be deconvolved with an estimate of the OTF. Figure 4.71 shows the 100
percent FSR image after deconvolution with a modified inverse filter incorporating
a 32 pixel radius cone filter while Figure 4.72 shows the 70 percent FSR. image after
the same process. The 70 percent FSR image is visibly sharper at both the lower
right and upper left corners of the image when compared to the 100 percent FSR

case.

4.6.4 Conclusions.  This experiment was only partly successful in demon-
strating improved AMOS imagery due to frame selection. While examples of im-
proved image spectrum SNR for both reference star and satellite were noted, these
results were not repeatable across the available data (See Appendix C). Poor per-
formance of the frame selection technique was due primarily to the relatively long
exposure lengths used in AMOS data collection. AMOS makes use of 60 and 99 mil-
lisecond exposure lengths to compensate for optical system losses inherent in the 1.6
meter telescope design. Long exposures violate the basic tenet of this technique: the
ability to discriminate and eliminate the worst manifestations of atmospheric tur-
bulence by discarding the lowest quality frames. Frame selection must utilize data
collected with sufficiently short exposure lengths to produce expected performance

gains.
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Figure 4.61 Multi-frame Image Spectrum SNR, AMOS Tape 5, Reference Star
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Figure 4.62 Gain Curves, AMOS Tape 5, Reference Star
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Figure 4.63 Multi-frame Image Spectrum SNR, AMOS Tape 2, Reference Star
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Figure 4.64 Gain Curves, AMOS Tape 2, Reference Star
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Figure 4.65 Multi-frame Image Spectrum SNR, AMOS Tape 3, Satellite
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Figure 4.66 Gain Curves, AMOS Tape 3, Satellite
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Figure 4.67 Multi-frame Image Spectrum SNR, AMOS Tape 2, Hubble Space
Telescope
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Figure 4.68 Gain Curves, AMOS Tape 2, Hubble Space Telescope
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Figure 4.69 Hubble Space Telescope Composite Image, AMOS Tape 2, Data Set
Size = 60 frames, FSR = 100 percent
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Figure 4.70 Hubble Space Telescope Composite Image, AMOS Tape 2, Data Set
Size = 60 frames, FSR = 70 percent
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2, Data Set Size = 60 frames, FSR = 70 percent, Modified Inverse
Filter, mtf = 32 pixels
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4.7 Summary

This chapter establishes performance limits for frame selection processing as a
function of key independent parameters. Using the fact that photon noise imposes
a fundamental limit on SNR, theoretical noise plots were generated which predict
the minimum object brightness required to produce SNR gain when compared to
the FSR = 100 percent case. The minimum brightness for a point source object was
visual magnitude +7 to +8, while the satellite required a minimum visual magnitude
of +4. These same theoretical noise plots showed that frame selection provides the
most benefit to data sets collected under average seeing conditions in most cases. -
CCD camera noise effects were seen to have a large influence on the establishment
of performance limits for dim objects. The effective average PSF was observed to
be virtually identical for point source and satellite objects after the application of
frame selection. This similarity allowed the successful utilization of deconvolution
techniques to sharpen these images. The visual superiority of images benefiting
from frame selection processing was demonstrated on simulated binary stars and
the satellite model. Frame weighting was seen to be significantly inferior to frame
selection for average seeing conditions and bright objects. However, some SNR
improvements were noted for poor seeing conditions and dim objects. Almost all
frame weighting test cases exhibited significant SNR losses at low spatial frequencies
when compared to the FSR = 100 percent case. These losses may limit the utility
of frame weighting. Finally, frame selection was demonstrated on AMOS imagery.
Improvements in SNR were noted for both reference stars and satellites, but this
performance was not consistent. The long exposure times used by AMOS for data
collection do not allow the “freezing” of individual realizations of the atmospheric
turbulence which significantly degrades the predictable performance of the frame

selection technique.
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V. Conclusions and Recommendations

5.1 Introduction

This investigation began due to the need to answer performance questions
raised l;y previous research associated with the frame selection technique [32]. A
complete understanding of the limitations associated with this technique is critical
to its application to U. S. Air Force imaging problems. In addition, it was desirable
to demonstrate thét signal-to-noise (SNR) gain due to frame selection processing
translates to visually improved images. A new image reconstruction technique, frame
weighting, was investigated. Finally, frame selection was demonstrated on actual
Air Force Maui Optical Site (AMOS) imagery. This chapter presents a summary of
the accomplishments documented in this thesis and provides recommendations for

further research in this area.

5.2 Conclusions

1. The transition between measurement noise limited and optical transfer func-
tion (OTF) noise limited imaging can be used to provide a theoretical predictor of
frame selection performance. Previous research established that photon noise sets a
fundamental limit on frame selection performance [32]. Frame selection provides im-
proved image spectrum SNR by discarding the worst manifestations of atmospheric
turbulence. This results in reduced image spectrum variance and higher SNR. When
objects are sufficiently dim, photon and charge-coupled device (CCD) camera noise
effects dominate the single frame SNR expression. All available frames in the data
set are needed to reduce this effect through averaging. Therefore, frame selection
cannot provide image improvement. These facts were used to generate theoretical
noise plots illustrating the influence of the seeing conditions, expressed by r,, and
the object visual magnitude, m,, on the transition to measurement noise limited

imaging. These theoretical noise plots proved excellent predictors of frame selec-
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tion performance limits as related to these parameters. For point source objects, the
minimum visual magnitude for SNR gain due to frame selection was m, = +7—8 de-
pending on the adaptive optics (AO) system modeled. An example extended object,
a satellite model, required a much brighter minimum visual magnitude of m, = +4.
In general, average seeing conditions, represented by r, = 10 centimeters, benefited
the most from frame selection processing. This increased SNR gain is due, in part,
to larger OTF variance for average seeing conditions when compared to poor or
very good conditions. Finally, CCD camera noise effects play a significant role in

establishing frame selection performance limits.

2. Point spread functions (PSFs) are nearly identical for point source and
extended objects after frame selection processing. This fact allows the optimal use
of deconvolution techniques, such as inverse and Weiner filters, to shérpen images
after frame selection. This thesis documents the successful demonstration of visual

image improvements due to frame selection.

3. The utility of the frame weighting approach developed in this thesis is
limited. This frame weighting technique demonstrated greater SNR gain than frame
selection for poor seeing conditions and dim objects. However, large signal losses at
low frequencies may make image reconstruction difficult. Further research is needed

to examine this potential drawback to the technique.

4. Short exposure times are necessary to get the full, predictable benefits
of frame selection processing on real imagery. Improvements in SNR gain were
demonstrated as part of this thesis for reference star and satellite objects collected
by the AMOS facility. Experiments using this data were not readily repeatable due to
the 60-99 millisecond exposure times used for image collection. Long exposure times
violate the advantage of this technique: the ability to discriminate and eliminate
the worst manifestations of atmospheric turbulence by discarding the lowest quality
frames. Frame selection must utilize data collected with sufficiently short exposure

lengths to produce expected performance gains.
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5.3 Recommendations for Further Research

1. To date, frame selection has only been demonstrated in conjunction with the
linear reconstruction of AO compensated images. Speckle interferometry may benefit
from forming the average energy spectrum and phase spectrum from only the highest
quality frames in a data set. A successful demonstration of frame selection-speckle
processing could result in a parallel study documenting the performance limits of

the new technique.

2. Frame selection should be fully demonstrated on real data collected with
adequately short exposure times. This data could be obtained from another Air
Force facility such as the Starfire Optical Range (SOR) 3.5 meter telescope. Short
exposure times will allow a convincing evaluation of frame selection performance on

real imagery.

3. A mathematically optimal frame weighting scheme should be investigated.
Chapter Two outlined two common approaches to solving problems of this type
within a linear algebra framework, linear minimum variance and least squares opti-
mization. Drawbacks were associated with computational difficulties and a lack of
. knowledge of OTF statistics. If these problems can be overcome, significant image

improvements may be available.

4. Simple, intuitive frame weighting should be reexamined in an attempt to
overcome the large low spatial frequency signal losses that are a side effect of this
technique. If this problem is overcome, frame weighting can provide a simple com-

plementary method to frame selection for poor seeing conditions and dim objects.

5. Image spectrum SNR provides a convenient engineering metric to measure
improvements in an image. However, the Air Force is only interested in visual image
improvements as they affect the gathering of information on objects in space. A

study of Air Force image assessment techniques may yield information that will




provide an objective performance metric for image improvement that is directly tied

to human visual system performance.
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This appendix contains additional gain curves for Experiment One, Chapter

Appendiz A. Frame Selection Simulation Results
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Figure A.1 Gain Curves, Point Source, AO Case 1, r, = 3 cm, m, = +2
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Figure A.2 Gain Curves, Point Source, AO Case 1, 1, = 5 cm, m, = +2
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Figure A.15 Gain Curves, Satellite Model, AO Case 1, r, = 10 cm, m, = +3
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Figure A.16 Gain Curves, Satellite Model, AO Case 1, 7, = 10 cm, m, = +4
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Figure A.17 Gain Curves, Satellite Model, AO Case 1, r, = 3 cm, m, = +6

T T T T T T T Y T
12} i 4
1.1F A : \: N
N/ Ja
N7 g Y A L
- . oA ,} W ININA v D
. R ‘ v':‘_.“\Jl"'\.-\\ i V\\]’
e -~ i ]
09 "~ N Y 4
r'/ ’
% ./‘
&} 0.8 N / =
|
0.7 4
0.6+ — 100% ]
; - = 70%
o5l -~ 50% |
<t 30%

0.4 1 1 1 1 1 1 1 1 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Normalized Radial Frequency

Figure A.18 Gain Curves, Satellite Model, AO Case 1, 7, = 5 cm, m, = +6
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Figure A.20 Gain Curves, Satellite Model, AO Case 1, r, = 20 cm, m, = +6
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Appendiz B. Frame Weighting Simulation Results

This appendix contains additional frame weighting distributions and gain curves

for Experiment Four, Chapter Four.
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Appendiz C. Air Force Maus Optical Site (AMOS) Data Results

This appendix contains additional gain curves for Experiment Five, Chapter

Four.
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Figure C.5 Multi-frame Image Spectrum SNR, AMOS Tape 3, Reference Star

1-3 T T T T T T T T T
1.2F R
’_.
1.1F NN ]
Jrio RN
v NS
I \
1
g i
A B
= 7!
S 0.0 e : N
00.9 e T T~ < !
- ~ /
- 7z
0.8 K : 4
—————————————————— - / ;
N ~ ;
0.7k S —— 100% e
- - 70%
06F e += - 50% ]
E. e B R 30%
0.5 1 I ) n L 1 |

1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Normalized Radial Frequency

Figure C.6 Gain Curves, AMOS Tape 3, Reference Star

C-4




.

Multi-frame SNR

a

o 1 1 1 1 el 1

. "N
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Normalized Radial Frequency

10

Figure C.7 Multi-frame Image Spectrum SNR, AMOS Tape 4, Satellite
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